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Abstract

A single unit of a good is to be sold by auction to one of many potential
buyers. There are two equally likely states of the world. Potential buyers
receive noisy signals of the state of the world. The accuracies of buyers’
signals may differ. A buyer’s valuation is the sum of a common value
component that depends on the state and an idiosyncratic private value
component independent of the state. The seller knows nothing about the
accuracies of the signals or about buyers’beliefs about the accuracies. It
is common knowledge among buyers that the accuracies of the signals are
conditionally independent and uniformly bounded below 1 and above 1/2,
and nothing more. We demonstrate a modified second price auction that
has the property that, for any ε > 0, the seller’s expected revenue will be
within ε of the highest buyer expected value when the number of buyers
is suffi ciently large and buyers make undominated bids.
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Mechanism Design, Interdependent Values, Informational Size
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1 Introduction

Models of auction design typically start with a distribution of possible expected
values from which potential buyers’ values are drawn independently. When
buyers’know their own values, second price auctions are natural candidates for
selling an object: buyers have a dominant strategy to bid their value, and in
the outcome of the auction, the object is sold to the highest value buyer. It
can be argued that, while this is very desirable, there are really no “absolutely
private" problems. As soon as there is the slightest chance that the winner of
the auction may want to resell the object for sale at a future date, or that he
cares even slightly about how much his heirs will be able to sell the object upon
his death, the problem becomes one of interdependent values: my value of the
object depends on other buyers’signals.

∗We thank the National Science Foundation for financial support. We thank Dirk Berge-
mann, George Mailath, Antonio Penta, Rakesh Vohra and the audience at several presenta-
tions for helpful conversations and suggestions, and Daniel Hauser for research assistance.
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An obvious response to this is that economic models often simplify real-world
aspects of a problem in order to focus attention on what seem to be the more
important aspects. Underlying this view is the notion that insights gleaned
from the simpler model that suppresses seemingly less important details carry
over, more or less, to the real world problem of interest. There is, however, a
delicate issue concerning the problem at hand: Jackson (2009) presents a simple
example in which the dominant strategy equilibrium exists only in the extremes
of pure private and pure common values; existence in the private value model
is not robust to a slight perturbation.
In this paper, we present a modification of the second price auction that gives

to the seller, in the presence of suffi ciently many potential buyers, an expected
revenue that is approximately equal to the revenue the seller could obtain if all
information were public. The mechanism is of interest beyond this performance.
Since Wilson (1987), researchers have been aware that the common method of
finding optimal mechanisms often relies on implausible assumptions regarding
what is common knowledge among the mechanism designer and the participants
of the economic problem at hand. Over the past several decades, there has
emerged a large literature on “robust mechanism design”that aims to identify
mechanisms that perform well according to some criterion while relaxing the
common knowledge assumptions.1

The common knowledge assumptions we make are markedly weaker than
what is usually assumed. Informally, we consider an interdependent value auc-
tion problem. There is a finite number of equally likely states of the world,
and a given buyer’s value for the object to be sold is the sum of a common
value component that depends on the state and an idiosyncratic value that is
state-independent. Buyers receive a noisy signal about the state of the world.
The accuracies of the buyers’signals are not necessarily the same. Upper and
lower bounds on the accuracies are common knowledge among the buyers. Buy-
ers may or may not have beliefs about their own or other buyers’accuracies,
but no assumptions are made about such beliefs. The seller knows nothing
about the buyers’ information. Much of the work following Wilson’s critique
has focused on relaxing the assumptions regarding what the mechanism de-
signer knows about players but has maintained common knowledge of much
of the information structure among the players themselves. Our assumptions
of what is common knowledge among the players is much weaker than usually
made.

1.1 Literature review

McLean and Postlewaite (2004) (hereafter MP2004) analyzed an interdependent
value model similar to the model in this paper. That paper focused on the role
of “informational size”introduced in McLean and Postlewaite (2002). A given
player’s informational size in an asymmetric information problem is, roughly,

1See Bergemann and Morris (2012) and Borgers (2015), Chapter 10 for discussions of robust
mechanism design.
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how much that player’s information might affect the probability distribution
over states of the world when other players truthfully reveal their private infor-
mation. MP2004 shows that when buyers’informational size is small, a seller
can use a modified second price auction that generates nearly the same revenue
as would be the case if the common value part of players’ information were
public. McLean and Postlewaite (2017) (hereafter MP2017) shows how one
can construct two-stage mechanisms for this kind of interdependent problem
that extract the common value part of private information in the first stage,
transforming the problem in the second stage into a private value problem. The
models in these papers follow the standard mechanism design approach in which
there is a prior that is common knowledge among the mechanism designer and
the participants in the problem. Bayes equilibrium is the solution concept in
these papers.
The mechanism in this paper will be a two stage mechanism similar to that

in MP2017, with the second stage being a second price auction. It differs in that
there is no assumed probability distribution and, consequently, Bayes equilib-
rium cannot be the solution concept. Rather, we assume that potential buyers
do not make dominated bids in the second stage auction. A buyer in the second
stage will not have a well defined probability distribution over states, hence she
will not be able to compute her expected value for the object to be sold. How-
ever, she will be able to put upper and lower bounds on what the expected value
would be if she knew other buyers’noisy signals about the state and the accu-
racies of those signals. We restrict buyers to bid no lower than the minimum
possible expected value over all possible realizations of the signals.
Du (2016) presents a mechanism to sell a common value object that maxi-

mizes the revenue guarantee when there is one buyer and shows that the revenue
guarantee of that mechanism converges to full surplus as the number of buyers
tends to infinity. Du assumes that the prior distribution of the common value
is known. His mechanism, however, guarantees good revenue for every equi-
librium, while as we discuss in the last section, our result focuses on “truthful
revelation”outcomes.2

Wolitzky (2016) studies mechanism design and the possibility of weakening
assumptions of agents’ beliefs. Toward this end, he assumes that agents are
maxmin expected utility maximizers a la Gilboa and Schmeidler (1989).3 Our
assumption about what agents know is substantially weaker, but Wolitzky’s
results hold for a fixed (possibly small) number of agents while our result is for
large numbers of agents.

2 The model

Consider an auction model with n players and a single indivisible object. Player
i’s valuation for the object is the sum of a common value component and an

2See also a related paper by Bergemann, Brooks and Morris (2017).
3Wolitzky also summarizes other recent papers examining the effect of weakening the com-

mon prior assumption.
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idiosyncratic private value component. The private value component of player
i is denoted ci and we assume that c1, .., cn are realizations of i.i.d. random
variables uniformly distributed in [0, 1]. The common value component depends
on the realization of one of two equally likely states of nature a and b. In
particular, player i’s valuation for the object is given by ci + v(a) in state a
and ci + v(b) in state b where we assume that v(a) < v(b). Players observe the
state only after the object has been allocated. However, each player receives a
signal ti ∈ {α, β} correlated with the state. The players’signals are independent
conditional on the state and i receives signal ti = α (signal ti = β) conditional
on state a (state b) with probability λi > 1

2 . For each t = (t1, .., tn) ∈ {α, β}n
and each i, let

fnα (t−i) := |{j : tj = α and j 6= i}|

with a similar definition for fnβ (t−i).
The critical feature of this model is the assumption that buyer i does not

know the accuracy parameters of the other buyers nor does he know his own
accuracy parameter λi. Players do however know the lower and upper bounds for
these accuracies, i.e., buyers know the values of the numbers x and y satisfying

1

2
< x ≤ λi ≤ y < 1

for each i. We denote the set of vectors of accuracies Λn = {(λ1, ..., λn) : λi ∈
[x, y]}, and by λ a generic element of Λn.

We propose a two stage auction mechanism whose extensive form is described
as follows.

Stage 1: Each buyer i observes his signal ti and private value ci and makes a
(not necessarily honest) report of his signal to the auctioneer. If buyer i reports
signal β and at least n2 other buyers report β, then all buyers who have reported
β (including i) advance to the second stage. If buyer i reports signal α and at
least n

2 other buyers report α, then all buyers who have reported α (including
i) advance to the second stage. If buyer i’s report is not a majority report, then
i exits the game with a payoff of 0.

Stage 2: Suppose that k + 1 bidders advance to the second stage where
k ≥ n

2 .With probability ε, the auctioneer will randomly choose (with probability
1
k+1 ) one of the second stage buyers to be awarded the object outright. With
probability 1−ε, the auctioneer will conduct a k+1 bidder second price auction.

In our framework, we will only assume that the bounds x and y are common
knowledge among the buyers. In addition, we do not specify beliefs regarding
the accuracy profile λ ∈ Λn so that, as a result, we cannot specify an equilibrium
in the two stage game. We will instead only assume that, in the second stage,
buyers submit undominated bids. More precisely, suppose that buyer i has
advanced to the second stage and will participate in the second stage auction
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along with k other buyers. Denote the set of other buyers as S and note that
|S| = k.

Definition: A bid τ i by buyer i in the second stage auction is dominated if
there exists a bid τ ′i such that
a. for every (σj)j∈S and for every λ ∈ Λn, the expected payoff to buyer i

when bidding τ ′i is at least as high as that attained when bidding τ i, and
b. for some (σj)j∈S and λ ∈ Λn, i’s expected payoff is higher when bidding

τ ′i than that attained when bidding τ i.

Before moving to the formal analysis, we will present an example that illus-
trates the basic purpose of the two stages of our mechanism.
The basic idea is to elicit and make public the information that gives rise to

interdependent values in the first stage, turning the second stage into a private
value problem. The interdependency results from buyers’noisy state signals,
and buyers are asked to report those signals in the first stage. In general buyers
may have an incentive to misreport those signals: if the common value is higher
in state b than in state a, a buyer who gets a noisy signal β that the state is
b has an incentive to report signal α that the state is a. Doing so lowers other
buyers’beliefs that the state is b, which lowers other buyers’expected value of
the object, leading them to bid lower in the second stage.
Our mechanism gives buyers an incentive to truthfully reveal their state

signal by including a buyer in the second stage auction if and only if his an-
nouncement is in the majority. If all other buyers are reporting truthfully, a
buyer has a better chance of being included in the second round by reporting
truthfully than by misreporting.
While a buyer is more likely to get into the second stage auction by reporting

truthfully, this is not enough to assure honest reporting. Consider the following
example.
Suppose there are two equally likely states, a and b, three buyers, and buy-

ers receive conditionally independent signals about the state where P (α|a) =
P (β|b) = .6.4 Player i′s utility function is v(s) + ci, s ∈ {a, b}; the ci’s are
independent draws from the uniform distribution on [0, 1].
Suppose buyer 1 receives signal β. His belief is now that P (b|β) = .6. If he

announces β he will be in the majority unless the two other buyers both receive
signal α. The probability of this is .16 if the state is b and .36 if the state is
a. Thus, conditional on having received signal β, buyer 1’s report of β will be
a majority report with probability .76. If buyer 1 reports α, he will be in the
majority unless the two other buyers both receive signal β. The probability of
this is .36 if the state is b and .16 if the state is a. Thus, conditional on having
received signal β, buyer 1’s report of α will be a majority report with probability
.72. Hence, as is expected, he has a greater chance of being in the majority by
announcing truthfully when his signal is β than by misreporting.
However, there is a possible gain from misreporting. The probability that the

buyer is in the majority when he reports α after seeing β is .72. When all buyers
4For this example we assume that the set of vectors of accuracies is a singleton.
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report truthfully and are informed of the numbers of reports of α and β, all
buyers who participate in the second stage auction have the same beliefs about
the probabilities of the states; that is, the asymmetry of information regarding
the common value components of buyers’information has been eliminated. But
when buyer 1 reports α when he has seen signal β, the buyer distorts the beliefs
of the other buyers. For example, if buyers 2 and 3 both report α, they observe
that all three second stage buyers reported α. Consequently, P (b|α, α, α) = .064
and the expected value of the common value component to them is .064 · v(b) +
.936 · v(a). Player 1, however, knows that his signal was β, and P (b|2 α′s and
1 β) = .288. The expected value of the common value component to buyer
1 is .288 · v(b) + .712 · v(a). Similarly, when one of the other buyers received
signal α and one received β, and buyer 1 reports α when he received β, buyer 1’s
posterior probability of state b is higher than other buyers’posterior probability.
For buyer 1 then, there is a potential benefit from reporting α when he sees β:
conditional on a majority of buyers announcing α, buyer 1 will have distorted
other buyers’ expected values so that their expectation of the common value
component is lower than it would be if those buyers knew his true signal. This
translates into lower bids by those buyers in the second stage auction, and hence,
a lower price that buyer 1 will pay should he win the object.
This potential benefit to buyer 1 of announcing α when he sees β must be

weighed against the probability of getting to the second stage. The expected
gain from misreporting depends on v(b) − v(a): when this difference is large
enough, buyer 1 will do better by misreporting when he sees β. Thus, the
greater chance of getting into the second stage auction may not alone be enough
to incentivize truthful reporting.
The above discussion points out a buyer’s tradeoff between maximizing the

chance of getting to the second stage auction and the benefits of distorting
other buyers’beliefs. But it is clear that when the accuracy of buyers’signals is
uniformly bounded below by x > 1/2 and above by y < 1, the degree to which
a buyer believes that he can alter other buyers’beliefs by misreporting goes to
zero as the number of buyers goes to infinity.
To summarize, we have so far argued that the gain to a buyer from mis-

reporting his state signal when other buyers report truthfully goes to zero as
the number of buyers goes to infinity. To ensure that there is no gain to such
misreporting we modify the second stage. With probability 1−ε the buyers will
engage in a second price auction; with probability ε the object for sale will be
given at no charge to one of the majority announcers who have advanced to
the second stage. We will show that, when there are many buyers, this small
modification will be suffi cient to assure that a buyer has a strict incentive to
announce truthfully if other buyers are doing so.

It is useful to provide a sketch of the argument. Choose ε > 0. Fix buyer i
and suppose that buyer i receives signal β and all other buyers report honestly
in the first stage and choose undominated bids in the second stage.

If i reports β along with k other buyers and advances to the second stage
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then he is awarded the object outright with probability ε
k+1 . With probability

1 − ε, i participates in a k+1 buyer auction in which exactly k+1 buyers have
received signal β. If Ai(fnβ (t−i) = k, ti = β) denotes the payoff to i in the
auction, then i’s second stage payoff is

z(fnβ (t−i) = k, ti = β) = (1−ε)×Ai(fnβ (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

If i instead reports α and advances to the second stage then he is awarded
the object outright with probability ε

k+1 . With probability 1− ε, i participates
in a k+1 buyer auction in which exactly k buyers have received signal α. If
Ai(f

n
α (t−i) = k, ti = β) denotes the payoff to i in the auction, then i’s second

stage payoff is

z(fnα (t−i) = k, ti = β) = (1−ε)×Ai(fnα (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

Buyer i will honestly report β if∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β) ≥
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

and the following steps outline why this is true if n is suffi ciently large. In
particular, the argument proceeds by showing that, for suffi ciently large n, there
exists an integer m(n) > n

2 for which the following steps are valid
5 .

Step 1: Suppose that k ≥ m(n).
Then for every admissible accuracy profile, we have

P (b|fnβ (t−i) = k, ti = β) ≈ 1

implying that i’s expected lottery payoff is

ci + E[v|fnβ (t−i) = k, ti = β] ≈ ci + v(b).

Similarly,
P (b|fnα (t−i) = k, ti = β) ≈ 0

implying that i’s expected lottery payoff is

ci + E[v|fnα (t−i) = k, ti = β] ≈ ci + v(a).

Step 2: Suppose that k ≥ m(n). Then

λiAi(f
n
β (t−i) = k, ti = β)− (1− λi)Ai(fnα (t−i) = k, ti = β) > −

(
v(b)− v(a)

4

)
5 In the proof, m(n) = x(n− 1)− (n− 1)

2
3 .
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and

λi[i’s expected lottery payoff | fnβ (t−i) = k, ti = β]−(1−λi)[i’s expected lottery payoff | fnβ (t−i) = k, ti = β] >
v(b)− v(a)

2

Step 3: Combining steps 1 and 2, we conclude that for all k ≥ m(n) and
for any accuracy profile, we have

λiz(f
n
β (t−i) = k, ti = β)−(1−λi)z(fnα (t−i) = k, ti = β) >

ε

(k + 1)

[
v(b)− v(a)

4

]
.

Step 4: For each k ≥ m(n) and for any accuracy profile, an application of
the law of large numbers yields∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a).

Furthermore,
P (fnβ (t−i) = k, ti = β|b) = λiQk(n)

and
P (fnα (t−i) = k, ti = β|a) = (1− λi)Qk(n)

where ∑
k≥m(n)

Qk(n) ≈ 1.

Step 5: Combining the previous steps, we conclude that∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)λiQk(n)−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)(1− λi)Qk(n)

≈
∑

k≥m(n)

[
λiz(f

n
β (t−i) = k, ti = β)− (1− λi)z(fnα (t−i) = k, ti = β)

]
Qk(n)

≈
∑

k≥m(n)

ε

(k + 1)

[
v(b)− v(a)

4

]
Qk(n)

≥ ε

[
v(b)− v(a)

4(n+ 1)

] ∑
k≥m(n)

Qk(n)

≈ ε

[
v(b)− v(a)

4(n+ 1)

]
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implying that∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β) > 0.

3 The result

Proposition: Suppose that v(b) > v(a) ≥ 0 and xv(a) > (1 − x)v(b). Then
for each ε > 0, there exists an N such that for each n ≥ N the following holds:
for every accuracy profile (λ1, .., λn) satisfying 1

2 < x ≤ λj ≤ y < 1 for each
j, for every characteristic profile (c1, .., cn) with ci ∈ [0, 1[ and for every profile
(σ1, .., σn) of undominated bids, the auction game is incentive compatible at the
first stage. That is∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β) > 0

and∑
k≥n

2

z(fα(t−i) = k, ti = α)P (fα(t−i) = k|ti = α)−
∑
k≥n

2

z(fβ(t−i) = k, ti = α)P (fβ(t−i) = k|ti = α) > 0.

4 Proof

Assume that i sees β and ci where 0 ≤ ci < 1.6

For a profile t of signals, note that

fα(t−i) + fβ(t−i) = n− 1

Let

πβk(n) = E[v|fβ(t−i) = k, ti = β]

π∗k(n) = E[v|fα(t−i) = k, ti = β]

and note that
πβk(n) > π∗k(n).

The dependence of fα(t−i) and fβ(t−i) on n and the dependence of π
β
k(n) and

π∗k(n) on λ1, .., λn are suppressed for notational ease.
Step 1: To begin, note that there exists an integer N0 such that for each i

and for all n ≥ N0, we have
n

2
< x(n−1)−(n−1)

2
3 ≤ λi(n−1)−(n−1)

2
3 < λi(n−1)+(n−1)

2
3 ≤ y(n−1)+(n−1)

2
3 < n .

6 In this proof, the assumption that v(b) > v(a) plays an important role. The case in which
player i sees signal α employs essentially symmetric computations but now the assumption
that xv(a) > (1− x)v(b) comes into play.

9



Applying Hoeffding’s inequality, it follows that

P

(∣∣∣∣fβ(t−i)

n− 1
−
∑
j 6=i λi

n− 1

∣∣∣∣ > 1

(n− 1)
1
3

|b
)
≤ 2 exp

(
−2(n− 1)

1

(n− 1)
2
3

)
.

Therefore,

P
(
fβ(t−i) > y(n− 1) + (n− 1)

2
3 |b
)
≤ P

fβ(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |b

 ≤ 2 exp[−2(n−1)
1
3 ]

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)
≤ P

fβ(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |b

 ≤ 2 exp(−2(n−1)
1
3 ).

Similarly,

P

(∣∣∣∣fα(t−i)

n
−
∑
j 6=i λj

n

∣∣∣∣ > 1

(n− 1)
1
3

|a
)
≤ 2 exp(−2(n− 1)

1

(n− 1)
2
3

)

implying that

P
(
fα(t−i) > y(n− 1) + (n− 1)

2
3 |a

)
≤ P

fα(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 )

and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)
≤ P

fα(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 ).

We also will need the following probability bounds that follow from the bounds
computed above:
(i)

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
= (1− λi)P

(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

(ii)

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
= λiP

(
fα(t−i) ≥

n

2
|b
)

= λiP
(
fβ(t−i) <

n

2
|b
)

≤ λiP
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 ).
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(iii)

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
= λiP

(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 )

(iv)

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
= (1− λi)P

(
fβ(t−i) ≥

n

2
|a
)

= (1− λi)P
(
fα(t−i) <

n

2
|a
)

≤ (1− λi)P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

Step 2: We first compute bounds for πβk(n) = E[v|fβ(t−i) = k, ti = β] that
hold for all suffi ciently large n. To begin, note that

πβk(n) = v(a)P (a|fβ(t−i) = k, ti = β) + v(b)P (b|fβ(t−i) = k, ti = β)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β).

Since

P (fβ(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj


and

P (fβ(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


we conclude that for all n ≥ N0,

P (a|fβ(t−i) = k, ti = β) =
P (fβ(t−i) = k, ti = β|a)

P (fβ(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

λi
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


(1−λi)

∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n+2
11



Let d = 2x− 1. Then there exists an integer N1 > N0 such that n ≥ N1 and
k ≥ x(n− 1)− (n− 1)

2
3 imply that(
x

1− x

) (n−1)d
2

≤
(

x

1− x

)2k−(n−1)
.

To see this choose N1 so that d− 2(n− 1)−
1
3 > d

2 for all n ≥ N1. Next, suppose
that note that k ≥ x(n− 1)− (n− 1)

2
3 . Then x

1−x > 1 implies that

(
x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
and it follows that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
=

(
x

1− x

)(n−1)[d−2(n−1)− 1
3

]
≥
(

x

1− x

) (n−1)d
2

.

In particular, (
x

1− x

)2k−n+2
≥
(

x

1− x

) (n−1)d
2 +1

Therefore, n ≥ N1 implies (since v(a) < v(b)) that for each k ≥ x(n− 1)−
(n− 1)

2
3 we have

v(b) ≥ πβk(n)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β)

≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Step 3: We next compute bounds for π∗k(n) = E[v|fα(t−i) = k, ti = β] that
hold for all n suffi ciently large. To begin, note that

π∗k(n) = v(a)P (a|fα(t−i) = k, ti = β) + v(b)P (b|fα(t−i) = k, ti = β)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

Since

P (fα(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


and

P (fα(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj
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we conclude that

P (b|fα(t−i) = k, ti = β) =
P (fα(t−i) = k, ti = β|b)

P (fα(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

(1−λi)
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


λi
∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n .
If n ≥ N1 and k ≥ x(n− 1)− (n− 1)

2
3 then we conclude from step 2 that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

) (n−1)d
2

implying that(
x

1− x

)2k−n
=

(
x

1− x

)2k−(n−1)(
1− x
x

)
≥
(

x

1− x

) (n−1)d
2

(
1− x
x

)
=

(
x

1− x

) (n−1)d
2 −1

.

Therefore,

v(a) ≤ π∗k(n)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)].

Step 4: For each n, define

ηn =

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)]

and note that

ηn ≥

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Summarizing Steps 2 and 3, we conclude the following: for every n ≥ N1 and
for each k ≥ x(n− 1)− (n− 1)

2
3 , we conclude that

13



v(b) ≥ πβk(n) ≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)] ≥ v(b)− ηn

v(a) ≤ π∗k(n) ≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)] = v(a) + ηn.

Step 5: We now compute estimates of player i’s expected payoff in the
second stage auction if player i reports α and advances to the second stage. In
this case, i will join k ≥ n

2 other players that have reported α. Therefore, i’s
expected payoff in the presence of k other players is equal to

(1− ε)× [expected auction payoff} + ε

k + 1
× [expected lottery payoff]

= (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)]

So we must estimate player i’s expected payoff in the auction.
Suppose that n ≥ N1 and k ≥ x(n−1)− (n−1)

2
3 . As summarized in Step 5,

we have computed a bound for π∗k(n), so we must estimate player i’s expected
payoff in the auction.

Suppose that each bidder i submits an undominated bid ci + zi. Then

v(a) + ηn ≥ zi ≥ v(a)

for every i. Note that the rv cj + zj in unif[zj , 1 + zj ]. Next, note that for each
y ∈ [maxj 6=i zj , 1 + maxj 6=i zj ] we have

Prob

(
max
j 6=i
{cj + zj} ≤ y

)
=
∏
j 6=i

(y − zj).

Next, note that for suffi ciently large n, we have

ci + zi ≤ 1 + max
j 6=i

zj

so we consider two cases. If maxj 6=i zj ≥ ci + zi, then i’s auction payoff is 0.
If maxj 6=i zj < ci + zi, then duplicating the previous argument, there exists
N3 > N1 such that, whenever n ≥ N3, i’s auction payoff is∫ ci+zi

maxj 6=i zj

[ci + π∗k(n)− y]
d

dy

∏
j 6=i

(y − zj)

 dy = (π∗k(n)−zi)
∏
j 6=i

(ci+zi−zj)+(ci+zi−max
j 6=i

zj)
∏
j 6=i

(µ−zj)
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for some µ satisfying
ci + zi > µ > max

j 6=i
zj .

Therefore, n ≥ N3 and k ≥ x(n− 1)− (n− 1)
2
3 imply that

Ai(fα(t−i) = k, ti = β) = (π∗k(n)− zi)
∏
j 6=i

(ci + zi − zj) + (ci + zi −max
j 6=i

zj)
∏
j 6=i

(µ− zj)

≤ ηn(ci + δ)k + (ci + δ)k+1.

Step 6: Suppose that n ≥ max{N2, N3} = max{N0, N1, N2, N3} and k ≥
x(n− 1)− (n− 1)

2
3 .

Let

B = max{z(fβ(t−i) = k, ti = β), z(fα(t−i) = k, ti = β) : t ∈ T, λ ∈ {x, y}n}.

Recalling that

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

we conclude that

∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|b)

≤
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a) + 4B exp(−2(n− 1)
1
3 ).

Recalling that

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )
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we conclude that∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|a)

≥
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)− 4B exp(−2(n− 1)
1
3 ).

Defining

Qk(n) =
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


it follows that

P (fα(t−i) = k, ti = β|a) = (1− λi)P (fα(t−i) = k|a) = (1− λi)Qk(n)

and
P (fβ(t−i) = k, ti = β|b) = λiP (fβ(t−i) = k|b) = λiQk(n).

Therefore,∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 8B exp(−2(n− 1)
1
3 ).

Step 7: Suppose that n ≥ max{N2, N3} = max{N0, N1, N2, N3} and k ≥
x(n− 1)− (n− 1)

2
3 .

In this step we estimate

λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β).

Recall that

z(fβ(t−i) = k, ti = β) = (1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
[ci + πβk(n)]

and

z(fα(t−i) = k, ti = β) = (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)].
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Applying Step 5, it follows that

−(1−λi)Ai(fα(t−i) = k, ti = β) ≥ −(1−λi)
(
ηn(ci + δ)k + (ci + δ)k+1

)
> −

(
ηn(ci + δ)k + (ci + δ)k+1

)
.

Steps 2 and 3 imply that πβk(n) → v(b) and π∗k(n) → v(a). So choose N4 >
max{N2, N3} so that for all n > N4,

λiπ
β
k(n)− (1− λi)π∗k(n) >

λiv(b)− (1− λi)v(a)

2
≥ xv(b)− (1− x)v(a)

2
> 0.

Therefore,

λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β) =

λi(1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
λi[ci + πβk(n)]

−(1− ε)(1− λi)Ai(fα(t−i) = k, ti = β)− (1− λi)
ε

k + 1
[ci + π∗k(n)]

≥ ε

k + 1

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)ηn(ci + δ)k + (ci + δ)k+1

=
1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
Step 8: Since ci + δ < 1, it follows that for n and k large enough,

ε

[
xv(b)− (1− x)v(a)

2

]
−(1−ε)(k+1)

(
ηn(ci + δ)k + (ci + δ)k+1

)
> ε

[
xv(b)− (1− x)v(a)

4

]
Furthermore, for n large enough,

ε

[
xv(b)− (1− x)v(a)

4

]
(1−2 exp(−2(n−1)

1
3 )−8B(n+1) exp(−2(n−1)

1
3 ) > 0

Consequently, there exists an N > N4 such that for all n ≥ N and k ≥ x(n −
1)− (n− 1)

2
3 , and we conclude that
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∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 8B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
Qk(n)

−8B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 8B exp(−2(n− 1)

1
3 )

≥ 1

(n+ 1)

 ∑
k≥x(n−1)−(n−1)

2
3

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 8B(n+ 1) exp(−2(n− 1)

1
3 )


≥ 1

(n+ 1)

(ε [xv(b)− (1− x)v(a)

4

]) ∑
k≥x(n−1)−(n−1)

2
3

Qk(n)

− 8B(n+ 1) exp(−2(n− 1)
1
3 )


=

1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

]) [
P (fβ(t−i) ≥ x(n− 1)− (n− 1)

2
3 |b)

]
− 8B(n+ 1) exp(−2(n− 1)

1
3 )

]
≥ 1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

])
(1− 2 exp(−2(n− 1)

1
3 )− 8B(n+ 1) exp(−2(n− 1)

1
3 )

]
> 0

5 Discussion

1. We demonstrated that in our mechanism, when it was assumed that buyers
do not make dominated bids should they reach the second stage auction, it was
optimal for a buyer to correctly reveal his state signal when there were many
buyers and other buyers reported truthfully.7 It would, however, also have
been optimal for a buyer to misreport his signal if all other buyers did so, for
more or less the same reasons that truthful revelation is often not the unique
equilibrium in a standard direct mechanism. To get to the second stage in our
model, a buyer wants to be in the majority; if all other buyers misreport, my

7Note that we do not say that correctly reporting the state signal is an equilibrium. Since
a buyer who reaches the second stage does not necessarily have a well defined probability
distribution over his possible values of the object, he does not have a well defined expected
utility conditional on getting to the second stage.
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doing so as well maximizes my chance to move to the second stage. It should
be noted, however, that whether all buyers report truthfully or all buyers lie,
the same set of buyers will advance to the second stage and having advanced to
the second stage, the constraints on the bids that are undominated is the same.
Hence, the lower bound on the seller’s expected revenue is the same whether
buyers unanimously announce truthfully or untruthfully in the first stage. This
does not, however, mean that the lower bound is the same for all equilibria. For
example, it is an equilibrium for all buyers to report state a regardless of the
signal they receive, and the lower bound on the seller’s expected revenue would
typically be lower for this equilibrium.
2. We treated the case in which there are two equally likely states of the

world. An extension to an arbitrary finite number of equally likely states would
be straightforward: let each buyer get a state signal that is correct with proba-
bility ρ and equally likely to be each of the other states with probability 1− ρ.
As in the case analyzed above, if more buyers have announced state s than any
other state, those buyers proceed to the second stage auction. As in the case
above, a small lottery will induce buyers to truthfully announce their signal
when other buyers do so.
3. We assumed two equally likely states. While it is not critical that the

states be exactly equally likely, the analysis above will break down if the states
have dramatically different probabilities. Suppose the probability of state a is
p and buyers get a state signal that has accuracy .6. If p = .5 and my signal
indicates that the state is a, my belief is that a is the more likely state, and
consequently, other people are more likely to get the signal indicating state a
than a signal indicating state b. However, if p = .01, my posterior beliefs are
that state b is more likely than a, and I have a better chance of getting to the
second stage by misreporting my state signal than by reporting truthfully. If the
states are not equally likely, there will be a minimum accuracy ρ of the signal
for which, when I observe a signal for state a, my belief is that a is the most
likely state. It is necessary and suffi cient that the signal accuracy be at least
this high to elicit truthful reporting.
4. We assumed that the common value components of utility (v(a) and v(b))

were the same for all buyers. One would expect that a similar argument would
hold for some variation in these values across buyers.
5. We assumed that the bounds on the accuracies of buyers’signals were

common knowledge. The intuition underlying the arguments above hold for
deviations from common knowledge that are not too large. Suppose that there
is a subset of buyers for whom the bounds on accuracies are common knowledge
among themselves. If the subset consists of a proportion of the number of
buyers that is close to, but less than, one, the intuition of our result carries
over: bidding in the second stage will generate expected revenue close to the
maximum possible, and it will be incentive compatible for buyers in the subset
to report truthfully if others in the group do so.
6. We demonstrated that, for a particular auction problem, the incentive

problem stemming from interdependent values can be ameliorated when there
are many buyers. The structure of the argument suggests that there is a general
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message. A buyer gains by misreporting that part of his private information that
affects other buyers’values. By doing so the buyer alters other buyers’values
by distorting their beliefs. The information structure in our problem has the
property that as the number of buyers gets large, the degree to which a buyer
can distort others’beliefs gets small, hence small rewards for truthful revelation
induce truthful reporting. When the number of buyers gets large, the aggregate
reward necessary to induce truthful reporting is small because the amount by
which a buyer can distort other buyers’ beliefs decreases faster than rate at
which the number of buyers increases.
While there are information structures for which this is not the case, many

natural information structures share this property. When this property holds,
an important part of agents’asymmetric information —the part leading to in-
terdependent values —can be dealt with at small cost.
Bibliography

References

[1] Bergemann, D., B. Brooks, and S. Morris (2017), “First Price Auctions with
General Information Structures: Implications for Bidding and Revenue,”
Econmetrica, 85, 107-143.

[2] Bergemann, D. and S. Morris (2012), “Robust Mechanism Design,”World
Scientific Publishing.

[3] Borgers, T. (2015), An Introduction to the Theory of Mechanism Design,
Oxford University Press, New York, NY.

[4] Du, Songzi (2016), “Robust Mechanisms under Common Valuation,”
mimeo, Simon Frasier University.

[5] Gilboa, Itzhak and David Schmeidler (1989), “Maxmin expected utility
with a nonunique prior,”Journal of Mathematical Economics, 18, 141—153.

[6] Jackson, M. (2009), “Nonexistence of Equilibria in Auctions with both
Private and Common Values,”Review of Economic Design 13(1/2), 137-
145.

[7] McLean, R. and A. Postlewaite (2002), “Informational Size and Incentive
Compatibility,”Econometrica 70, 2421-2454.

[8] McLean, R. and A. Postlewaite (2004), “Informational Size and Effi cient
Auctions,”Review of Economic Studies 71, 809-827.

[9] McLean, R. and A. Postlewaite (2017), “A Dynamic Non-direct Imple-
mentation Mechanism for Interdependent Value Problems,” Games and
Economic Behavior 101, 34-48.

20



[10] Wilson, R. (1989), “Game-Theoretic Analyses of Trading Processes,” in
Advances Fifth World Congress, ed. by T. Bewley. Cambridge, U.K.: Chap.
2, 33-70.

[11] Wolitzky, Alexander (2016), “Mechanism Design with Maxmin Agents:
Theory and an Application to Bilateral Trade,” Theoretical Economics
(11), 971-1004.

21


