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Abstract

This paper characterizes the relationship between anthropogenic cli-
mate change and global inequality, a subject intersecting two of the defin-
ing challenges of the 21st century but which remains virtually unstudied
at subnational levels. To make overdue progress addressing this research
gap, I improve upon frontier methods for estimating climate impacts to
overcome outstanding methodological limitations and apply these re-
finements to fine-scaled data on globally representative income distri-
butions. Next, I document new evidence that temperature shocks sig-
nificantly and persistently impact distributions of income within coun-
tries, an effect driven by concentrations of harm onto the lowest income-
earners in warm climates as well as a surprising vulnerability of the top
1% in these countries to environmental shocks. Integrating these inequal-
ity effects over observed distributions of income and the spatial incidence
of global warming, I find that climate change between 1981 and 2016 re-
gressively redistributed global shares in a reduced stock of income both
between and within countries largely by depriving the world’s poorest
of economic opportunity that would otherwise have been available. Al-
together, these results constitute the most comprehensive evidence yet of
the regressive impact of climate change on global inequality.
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1. Introduction

Mitigating anthropogenic climate change and constraining economic inequal-
ity are widely regarded as two of the defining social challenges of the 21st
century. They are foundational to the 2030 Agenda adopted by all United Na-
tions members, whose Sustainable Development Goals explicitly resolve to
“take urgent action to combat climate change and its impacts” and “reduce in-
equality within and among countries” (United Nations, 2015). These are also
understood to be intimately related objectives: the Intergovernmental Panel
on Climate Change identifies “widening opportunities between and within
countries” (Masson-Delmotte et al., eds, 2018) as first-order considerations in
any sufficient policy response to climate change and the World Inequality Re-
port remarks that “climate mitigation is largely a distributional issue, not only
between countries but also within them” (Chancel et al., 2022).

These linkages are also appreciated by those who directly study the social
impacts of climate change; the overwhelming majority of published environ-
mental economists surveyed in 2021 indicated a belief that climate change is
“likely” or “very likely” to exacerbate inequalities between (89%) and within
(71%) countries (Howard and Sylvan, 2021). However, there remains virtually
no evidence characterizing the economic incidence of climate change across
the Earth’s eight billion people beyond what is captured by aggregate differ-
ences between fewer than 200 national boundaries. Addressing this knowl-
edge gap is an increasingly vital priority for understanding and equitably re-
sponding to the interconnected and cascading crises to come.

In fact, Chancel et al. (2022) estimates that within-country differences have
comprised a rapidly growing majority portion of global inequality since the
emergence of the modern international order in the second half of the 20th
century. By the group-decomposable Theil measure, between-country differ-
ences now account for just over 30% of global income inequality, down from
57% as recently as 1980. Thus, an analysis of inequality which remains ag-
nostic to material inequalities between persons risks increasing irrelevance
exactly when it is most urgent. This paper aims to initiate and stimulate
progress in this area by providing the most comprehensive characterization
yet of the effects of climate change on global income inequality.

Contributing to this agenda requires overcoming several challenges. First,
prevailing empirical methods commonly used to estimate climate impacts re-
quire refinement. Even in standard country-level analyses using the same
sources of data, estimated impacts of climate change are known to diverge
by orders of magnitude depending on the chosen specification for the “dam-
age function” which causally relates variation in weather to variation in a
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social outcome of interest (Pindyck, 2013). To avoid importing this impreci-
sion into a nascent research setting, I extend cutting-edge impact models to
incorporate features which address identification concerns flagged in recent
literature. This methodological contribution is presented in Section 2 using
an expositional application to conventional aggregate impacts for compari-
son to existing literature. In Section 2.2, I show how new tools from empirical
macroeconomics (Inoue et al., 2024) may be used to conduct direct statisti-
cal tests of the persistence dynamics whose unfalsifiability has largely driven
the extreme instability of climate damage estimates reported in the literature
(Newell et al., 2021).

I proceed to apply this empirical framework to the most recent update to
the World Inequality Database, which provides annual near-balanced percentile-
level pre-tax income estimates for an expanded set of countries now repre-
senting almost the entire global population. In combination, this strictly im-
proves the frontier of an analytical tradeoff between disaggregated analysis
and global coverage which has historically characterized distributional anal-
yses of climate change. As a result, we are able to document in Section 2.5 new
empirical evidence demonstrating that the impacts of identified temperature
shocks on within-country distributions of income are substantial and driven
primarily by extreme tail effects in warm climates. More specifically, esti-
mates imply substantial transfers of national income shares away from bot-
tom quantiles and, perhaps surprisingly, the top 1% in warm climates. Since
impacts to warmer countries are significantly negative across all quantiles,
these inequality effects largely capture regressive redistribution of claims to
diminished stocks of national income relative to the counterfactual absent a
unit temperature shock.

In Section 3, we aggregate our analysis to produce the first reported esti-
mates of the distributional impact of climate change on global income. This
entails integrating the reduced-form within-country impacts over historically
observed distributions of income and climate over the maximum observa-
tional period between 1981 and 2016. We find that climate-induced asym-
metries in the incidence of temperature shocks over this 36-year period have
unambiguously exacerbated global inequality, mainly through a high likeli-
hood of depriving income growth for roughly the poorest 20% of global in-
come earners. For the poorest percentile in our data, expected incomes absent
climate impacts would be, conservatively, 29% higher than they are today.
Evidence is also consistent with the standard finding in the established litera-
ture on aggregate impacts that climate change is very likely to have reduced
total incomes over this period though net impacts are uncertain for the global
middle class. In Section A1, I apply methods from climate attributional sci-
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ence to state-of-the-art global climate models to quantify the contributions of
anthropogenic forcings to these inequality effects.

Section 4 concludes by considering how these new findings complement
and complicate existing aggregate-level evidence on global climate impacts. I
close by considering the limitations of the present study design and propose
promising lines of future research recognizing distributional welfare impacts
as vital to the economic analysis of climate change and the design of equitable
climate policy.

1.1 Related literature

Spurred by methodological advances, accessibility of computing power, and
political urgency, the past decade has seen a proliferation of economic re-
search dedicated to estimating the social impacts of climate change. To con-
textualize the relative absence of distributional impact studies in climate eco-
nomics, it is instructive to familiarize the reader with the subfield’s taxonomy
of empirical designs into complementary “top-down” and “bottom-up” ap-
proaches supporting a prevailing utilitarian cost-benefit paradigm.

Top-down approaches restrict attention to a widely available outcome of
interest. This outcome, most commonly gross domestic production, is taken
to be a comprehensive enough proxy for social welfare that climatically at-
tributable impacts to the stock of this outcome may represent the socially
relevant climate “damage”. The pioneering works in this category include
Dell et al. (2012) and Burke et al. (2015). Alternatively, bottom-up approaches
consider impacts to distinct “sectors” of an economy; mortality (Carleton et
al., 2022), energy consumption (Rode et al., 2021), and labor (Graff Zivin and
Neidell, 2014) are common areas of focus. Results using this approach can be
presented as partial costs or combined with other sectoral damages in a inte-
grated model which accounts for their interdependencies. The advantage of
the former approach is in its convenience and interpretability: the wide avail-
ability and international comparability of economic aggregates such as those
provided by national accounts substantially simplifies the task of calculating
global climate impacts. The benefit of the latter approach is in its ability to
account for disaggregated, distributional, and non-market impacts to which
single-dimensional aggregates are largely indifferent.

Conversely, the disadvantages of the two approaches jointly constrain the
economic analysis of climate change; the simplicity of the top-down approach
and prohibitive data and resource demands of the bottom-up approach pose
a critical tradeoff between geographic disaggregation and global coverage. In
perhaps the most prominent existing work directly concerned with charac-
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terizing global climate inequality, Diffenbaugh and Burke (2019) estimate that
the ratio between the top and bottom deciles of the global income distribution
was 25% larger in 2010 than it would have been had anthropogenic climate
forcings been constrained to 1960 levels, all else held equal. But this is neces-
sarily calculated by assigning all individuals their country’s mean GDP and
defining deciles by discrete national population sizes, an unavoidable restric-
tion when limited to 160 or so distinct economic units. The authors remark
that “documenting the impact of global warming on within-country inequal-
ity remains an important challenge.”

Hsiang et al. (2017) is a rare example which makes the opposite compro-
mise between specificity and breadth in order to make progress in this area.
Integrating fine-scaled agricultural, crime, energy, mortality, and labor data,
the authors determine that climate risks in the continental United States are
disproportionately borne by counties in the US South and Midwest, regions
generally already poorer than their coastal counterparts; climate change then
is likely to imply worsening inequality within the United States. But to make
more generalizable claims about the inequality implications of global warm-
ing, analyses must extend to settings which lack comparably rich or granular
data.

The disaggregated distributional focus of this paper complements a much
more established body of work reporting unequal impacts specifically be-
tween countries. Although estimates of long-term cumulative impacts are
a notorious and influential area of disagreement (Newell et al., 2021), there
is now general consensus that non-linearities in the temperature response of
aggregate variables concentrate climate damage and risk in warmer, gener-
ally already poorer countries, exacerbating between-country global inequal-
ity (Howard and Sylvan, 2021). These features motivate the methodological
refinements described in Section 2 to address the extreme divergence in dy-
namic effects while maintaining this state-dependency broadly accepted by
the literature. Like Diffenbaugh and Burke (2019), a subset of these studies
explore the implications of this between-country dimension of inequality di-
rectly, for example by highlighting the inverse relationship between country-
level contributions to cumulative global greenhouse gas emissions and expo-
sure to their social consequences (Chancel and Piketty, 2015; Ricke et al., 2018;
Kotz et al., 2024).

Similar non-linearities emerge at the micro level across a range of out-
comes as varied as labor supply (Graff Zivin and Neidell, 2014), agricultural
yields (Schlenker and Roberts, 2009), and standardized test performance (Good-
man et al., 2020). Carleton and Hsiang (2016) overviews the proliferation of
multidisciplinary studies in this category whose results describe patterns of
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setting-specific inequality suggestive of a broader micro-level environmen-
tal inequality similar to those observed in the aggregate. The present study
bridges this micro evidence with the aforementioned macro evidence on in-
equalities between countries, estimating distributional responses consistent
with the general features of both categories of impacts. We also document
evidence of negative impacts to an elite minority, which I have not seen ex-
amined in existing work.

The literature on climate impacts on economic inequality within countries
remains comparatively sparse in large part due to an absence of adequate
research infrastructure. Estimation of distributional equivalents to the ag-
gregate damage functions standard in the literature requires data compara-
ble in credibility and coverage to domestic production data whose construc-
tion across countries follows rigorous standards set forth by the international
System of National Accounts (European Commission et al., 2008). Histori-
cally, distributional measurement of welfare has lacked and arguably been
crowded out by the wider interest and investment in measuring aggregate
production (Jorgenson, 2018). While secondary inequality data products com-
piling country-year inequality variables from a wide array of official and sur-
vey sources date at least as far back as Deininger and Squire (1996), the valid-
ity of these products for cross-country causal analysis has long been known
to be limited by inconsistencies across primary sources in construction and
availability (Atkinson and Brandolini, 2001). For example, the most recent
rigorous evaluation I could find of these secondary datasets concluded that
results derived from the conveniently packaged Standardized World Income
Inequality Database should be regarded as “not sufficiently credible” and that
analyses using the United Nations’ long-running World Income Inequality
Database should at best be accompanied by justifications for their sample and
variable selection criteria (Jenkins, 2015). Nonetheless, these inequality prod-
ucts have been used in at least two recent studies (Cevik and Jalles, 2023; Gilli
et al., 2024) relating the inequality measures provided in these products to
variations in weather.

In the absence of credible global inequality measures, a handful of works
have managed to contribute to the study of within-country inequality im-
pacts by using idiosyncratic data available for individual countries. Hsiang et
al. (2017), described earlier, is a particularly impressive example. Elsewhere,
Marx (2024) uses rich tax data from France to infer that years with marginally
more days above 30◦C are associated with wider income disparities between
the richest and poorest cantons (administrative units described as roughly
equivalent to 10 municipalities). Dasgupta et al. (2023) uses data from perhaps
the most unequal country in the world to project a 3-6 Gini point increase in



7

South Africa by 2100 under a moderate warming scenario.
The research programs of Thomas Piketty, Emmanuel Saez, and their co-

authors since the turn of the century are widely credited with revitalizing
public and academic interest in the measurement of within-country inequal-
ity. Beginning with work tracing the long-run evolution of income and wealth
inequality in France (Piketty, 2003) and the United States (Piketty and Saez,
2003), their mobilization of extensive tax returns data has enabled credible
measurement of top incomes over long time horizons, stimulating new pro-
grams of research and equipping the general public with new political lan-
guage around which to mobilize (Jones, 2015). This paper takes advantage
of the cross-country research apparatus that has rapidly developed and been
made accessible in recent years with the intention of maturing the economic
analysis of climate change in a similar manner. Palagi et al. (2022) is the only
other climate-economic study I could locate which makes use of the same
“distributional national accounts” (World Inequality Lab, 2024) used in this
study. The authors find that extreme precipitation negatively impacts low-
income individuals much more severely in countries more dependent on agri-
culture.

Finally, I locate this paper in the context of a growing demand for distribu-
tional considerations in economic analyses of climate change and the design
of climate policy. For example, Chancel et al. (2023) estimates that within-
country inequality of carbon emissions have recently exceeded the equivalent
“carbon inequality” between countries and advocates for targeted carbon tax-
ation programs based on individual footprints to more efficiently internalize
the climate change externality. The modern SCC framework accommodates
equity considerations by concavifying the underlying utility function so that
the welfare weights assigned to individuals are inversely related to their rel-
ative levels of consumption; a logarithmic specification is commonly chosen,
for example. Variations of this more progressive utilitarianism have been in-
stitutionalized to some degree in a handful of countries including recently in
the United States (Office of Management and Budget, 2023). Theoretically, the
way equity weighting is implemented should result in substantially higher
SCC estimates depending on the extent to which the distributive effect of cli-
mate change is modeled as regressive. This paper provides the first compre-
hensive estimate of the global regressivity of climate change at subnational
resolution.

2. Weather shocks and within-country inequality
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2.1 Identifying temperature shocks

Until recently, it has been customary in the empirical climate impacts litera-
ture to use raw levels of weather variables such as temperature or rainfall as
primary explanatory variables of interest. This convention is motivated by
the intuition that annual fluctuations in temperature are plausibly exogenous
with respect to most economic activity. Recent work such as Kahn et al. (2021),
Bilal and Känzig (2024), and Nath et al. (2024) challenge this convention on the
grounds that increased production correlates with weather through its associ-
ation with greater emissions of greenhouse gases and that temperature levels
exhibit substantial autocorrelation which confounds estimation. In place of
raw temperature, they each propose different constructions of a temperature
shock intended to better represent adaptive expectations and satisfy exogene-
ity conditions for valid dynamic inference.

Ramey (2016) outlines these conditions for general time series settings. For
a candidate treatment variable to represent a valid shock, it must correspond
to unanticipated movements in exogenous variables, be exogenous with re-
spect to current and lagged endogenous variables, and be uncorrelated with
other exogenous shocks included in the regression model. We follow the con-
struction of Kahn et al. (2021) in defining shocks τ̂it with respect to an M -
period moving average of local temperature:

T it :=
1

M

M∑
m=1

Ti,t−m (1a)

τ̂it := Tit − T it (1b)

Figure 1 depicts country time series of the resulting temperature shocks
with colors and flexible local regression curves corresponding to an even split
of all country-years into three groups defined by their average temperature.
The positive values of the local regression curves over almost the entire ob-
servation period capture the idea that systematic warming is characterized
by the increased relative frequent and magnitude of “hot” shocks compared
to “cold” shocks even if expectations about weather adapt to recent weather.
Intervals where the running average shock is closer to 0 correspond to rela-
tive stability in the (lagged) climate where imperfect or lagged adaptation is
less damaging. The marginal distribution plots on the right demonstrate that
colder seasonal countries experience much larger temperature shocks than
their warmer counterparts, a reflection of both greater natural weather vari-
ability and the fact that anthropogenic absolute warming is greater in colder
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regions furthest from the equator1.

Figure 1: Country-level time series of identified temperature shocks

Points correspond to shocks observed in individual country-years. The
three colors correspond to an equal-sized binning of country-years by their
moving-average temperature. Flexible local regression curves describe
time trends split by this binning. Marginal distribution plots on the right
show that colder country-years observe greater variance in shocks.

As with the other candidate formulations, shocks defined this way satisfy
the exogeneity conditions when lags are included as controls in the regression
model being estimated.

I consider the simple definition above to be the most compelling construc-
tion of a temperature shock for several reasons. First, for sufficiently large
M , this definition of the state variable T it has an appealing coherence with
the climatological convention of using long-run moving averages of weather
realizations to anchor the climate at a fixed point in time. Most commonly,
these “climate normals” are defined as 30-year averages to account for the
fact that even a stable climate may exhibit cyclical weather patterns spanning
several years. The most economically relevant example of this natural vari-
ability is the El Niño Southern Oscillation, an ocean-warming phenomenon
which can vary average global surface temperatures by as much as 0.4 across

1Figure A1 provides visualizations of the spatial distribution of anthropogenic warming for
various global climate models



10

its three phase cycles which may span 2-7 years. Relatively minor oscillations
can span multiple decades.

Secondly, these definitions of the shock and state variables are much more
consistent with the empirical literature which generally reports “limited evi-
dence” of adaptive behavior moderating the direct impacts of weather shocks
in the context of climate change (Burke et al., 2024). Here, the state T it may be
taken to represent the time-varying expected value of realized temperature,
capturing beliefs about the unobserved probability distribution from which
the weather realized in country i at time t is drawn, i.e., the local climate.
Since the climate at time t would be best represented by the climate normal
centered on time t, which is a function of future realizations, there exists an
M/2-period lag between the “true” climate and the expected climate T it. Over
the span of our historical data, we find that this difference is non-trivial: the
median country observes, on average, a 0.26◦C (IQR: 0.18-0.36) increase in the
30-year moving average every 15 years.

This lag between true and expected climate can be interpreted as a bound
on the ability for belief or anticipation effects to offset the direct effects of
weather shocks, corresponding to climate adaptation in the sense of Kahn et
al. (2021) and Hsiang (2016)). Alternatively, these lagged expectations may
also be intuitively rationalized in a model of limited or costly adaptive capac-
ity; even a farmer internalizing climate change trends will not transform their
land and re-optimize their crop mix for a marginally warmer climate each
year. This imperfect adaptability gives rise to the positive trends we observed
in Figure 1 during periods of more rapid climate change. To the extent that
local expectations about the climate are anchored by recent experience, shocks
defined this way may be interpreted as deviations relative to adaptive expec-
tations. It is intuitive that one of the main channels through which systematic
climate change imposes economic harms is through the increased frequency
and magnitudes of positive “hot” shocks relative to negative “cold” shocks
and the implausibility of perfect adaptation.

This contrasts with the constructions of Bilal and Känzig (2024) and Nath
et al. (2024) (henceforth, NRK), which define shocks as residuals from au-
toregressive distributed lag models of temperature. In so doing, they im-
plicitly assume a hyper-responsive model of adaptation wherein beliefs are
optimally set each period to costlessly minimize the ‘surprisingness’ of that
period’s temperature and thereby reducing direct economic effects of temper-
ature shocks. As a result, their time series of observed temperature shocks
are shown to be stationary with zero mean even in the context of systematic
climate change. Thus, by the linearity assumption described in Section 2.1
wherein cold shocks have the exact opposite effect of hot shocks, calculating
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the accumulated effect of shocks constructed in this manner would net out
to zero economic damage. Damages from climate change seem to be recov-
ered in these models only by annualizing long-term systematic warming and
assuming the same agents do not internalize the gradual long-term trends
despite their perfect and costless adaptability to larger short-term shocks.

Estimating responses to a temperature shock

We adapt the semi-parametric local projections method pioneered by Jordà
(2005) to estimate state-dependent impulse responses to a temperature shock.
As Jordà (2023) notes, the method has found growing appeal outside its home
field of applied macroeconomics as its flexibility (Cloyne et al., 2023), rele-
vance to the potential outcomes framework (Dube et al., 2024), and robustness
to misspecification and non-stationarity (Montiel Olea and Plagborg-Møller,
2021; Montiel Olea et al., 2024; Piger and Stockwell, 2023) have been estab-
lished in recent econometric literature. Berg et al. (2024), Bilal and Känzig
(2024), and NRK are other climate papers which apply the method to estimate
dynamic economic responses to temperature shocks.

These features are particularly useful for addressing several outstanding
identification concerns flagged in reviews of impact estimation methods. The
remainder of this section uses an application to country-level GDP impacts
to aid exposition of the methods used in this study which will also serves to
familiarize the reader with features of the aggregate impacts literatures upon
which the inequality results build.

We use panel data to estimate dynamic responses to temperature for sev-
eral distributional outcomes. For now, we take yit to represent the logarithm
of GDP for country i in year t. The local projections method entails estimat-
ing H + 1 iterations of the following single-equation model corresponding to
different projection horizons h ∈ {0, 1, ..., H}:

∆hyi,t+h := yi,t+h − yi,t−1

= β1hτ̂it + β2hτ̂it · T it + λhT it + Zitγh + µi + ηt + ui,t+h

(2)

The matrix Zit includes lagged controls {τ̂i,t−j, τ̂i,t−j · T it,∆yi,t−j}pj=1. The
inclusion of p lags of the shock τ̂ accounts for potential autocorrelation in the
treatment, validating its use as a shock as described in the previous subsec-
tion. Interactions of these lagged shocks with the state variable capture po-
tential state-dependencies in these autocorrelations. Lags of the outcome are
included as a guard against trend non-stationarity. Finally, the set µi and ηt
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of standard linear fixed effects are included to absorb time-invariant country-
specific effects and common year-specific effects. Besides the construction of
the shock and permitting the state variable to vary over time, this model bor-
rows directly from the static state-dependent model of NRK.

Each projection horizon h thus attributes a main effect β1h representing
the impact of a unit pulse of temperature on the “long difference” of y pro-
jected h periods after the shock. An interaction term allows the effect to scale
linearly with the country-year’s long-run average temperature T it. This state-
dependency is motivated by the standard result in the climate impacts litera-
ture that the economic effect of a temperature shock is increasingly negative
for warmer climates so we should expect this coefficient to be negative. Fi-
nally, the inclusion of a main effect λh associated with the time-varying state
variable allows for the possibility that a systematic change in the climate even
within the same country may impact expected growth independent of its im-
pact on the distribution of shocks. For example, if a hot country stabilizes at
a climate that is 1◦C warmer after an intermediate period of warming, it is
plausible that economic productivity may be systematically lower even when
given sufficient time to maximally adapt. This will not affect the estimation
of an impulse response to a shock of temperature but will be relevant for the
historical analysis in Section 3.

It is worth taking stock of the restrictions imposed by the model described
in (2). The flexibility of this semi-parametric approach is particularly appeal-
ing in the context of a literature where the magnitudes of estimated impacts
are known to be largely driven by the specification of the damage function
(Newell et al., 2021; Chang et al., 2023). For example, two studies projecting
the proportional loss in cumulative global production by 2100 arrive at point
estimates of -3.4% (Casey et al., 2023) and -20% (Burke et al., 2015) under the
same worst-case warming scenario with almost all this divergence stemming
from the decision to specify the outcome in levels (e.g., log GDP) or as growth
(e.g., first differences in log GDP). Section A2.1 and Figure A5 describe how
this “levels vs. growth” choice amounts to assuming outright that tempera-
ture has a one-off or permanent effect.

Compromise persistence structures where level effects are temporary but
diminishingly persistent can be accommodated by either model by including
p additional lags of the explanatory variables. However, as the persistence
being considered increases in horizon, the efficiency gains from parametric
specifications are rapidly diminished to accommodate increasingly imprecise
dynamic effects. The efficacy of lag augmentation is further constrained by
non-linear functional forms and autocorrelation in the explanatory variables,
both general features of damage functions where absolute temperature is used
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as an explanatory variable. Indeed, Burke et al. (2015) conclude that the iden-
tifying variation which remains after including lags “cannot reject the hypoth-
esis that this effect is a true growth effect nor the hypothesis that it is a tem-
porary level effect”, rendering these extremely influential parametric choices
unfalsifiable.

By comparison, the local projections method imposes no restriction on
the evolution of a given IRF over time since the effects associated with each
projection horizon are estimated from entirely separate regressions and dif-
ferent subsamples2 In addition, the local projection specified in long differ-
ences has been shown to be particularly robust to biases associated with non-
stationarity processes Piger and Stockwell (2023); Jordà (2024) such as those
which plague standard GDP regressions specified in levels (Nelson and Plosser,
1982; Campbell and Mankiw, 1987). Altogether, the method is relatively ro-
bust to different forms of misspecification by remaining mostly agnostic about
the underlying data-generating process and as we shall see, can be used to
produce a direct statistical test of this influential persistence.

Collecting estimates of the coefficients of interest {β̂1h, β̂2h}Hh=0 from (3) and
adopting the notation of Jordà (2023), our set of local projection estimates im-
ply a familyRτ→y(h;T ) of state-dependent impulse responses as a function of
the state variable T :

Rτ→y(h;T ) := β̂1h + β̂2h · T (3)

For example, the top row of Figure 2 depicts three different IRFs which
each result from the same regressions but are distinguished by different as-
sumed values of the state variable. These representative states correspond
to the 20th and 80th percentiles of country-year temperatures in our sample
(10◦C colored blue and 26◦C colored red) and their average (18◦C, roughly the
40th percentile and colored green). Note that for expositional convenience,
we have transformed our state variable to center on the intermediate refer-
ence temperature of 18◦C so that the responses in green correspond to the
sequence of estimated main effects β̂1h while the responses in blue and red in-
corporate equivalent but opposite interaction effects corresponding to ±8◦C
deviations from this reference state so that point estimates are calculated as
β̂1h ± 8β̂2h

3. This coloring scheme and these reference temperatures will be

2Residuals across the projection horizon are generally autocorrelated but do not affect consis-
tency of point estimates.

3To be specific, we redefine the state variable as T it := 1
30

∑30
m=1(Ti,t−m − 18). Under this

transformation, the blue and red IRFs correspond to the states T i − 8 = 10◦C and T i + 8 =
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used throughout the rest of this paper.

Figure 2: GDP impulse response to a 1◦C shock

The plots in the top row correspond to estimates of impulse responses of
GDP estimated by the H+1 local projections regressions specified in (2) for
three representative temperatures depicted in different colors. The plots
in the bottom row depict the same functions annualized by dividing esti-
mates by h+1. All figures in this paper adopt the same color-temperature
correspondence where relevant. Points in black correspond to point es-
timates deemed significant by the joint hypothesis test described in Sec-
tion 2.2 with filled circles corresponding to significant main effects and
asterisks corresponding to significant interaction effects.

Compared to a standard growth regression from which permanent level
effects are inferred from observations contemporaneous to the shock, the LP
method conservatively estimates persistent effects at each horizon h sepa-
rately using observations of changes in outcome y over h periods and as de-
picted by the corresponding IRF Rτ→y(h;T ). Leaving aside the question of
valid inference for now, interpretation of a resulting IRF proceeds as follows

1. Level effect

26◦C respectively.
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• One-period level effect: Rτ→y(h;T ) = 0 ∀ h > 0

• Persistent level effect: ∃ h∗ > 0 such thatRτ→y(h;T ) = 0 ∀ h > h∗

2. Growth effect

• Simple growth effect: Rτ→y(h;T ) converges to a non-zero constant

• Divergent growth effect: Rτ→y(h;T ) never converges to a constant

The contemporaneous estimates in the IRFs in the first row of Figure 2 de-
pict a pattern now standard in the aggregate impacts literature featuring near-
null temperature effects in cold climates, mild effects in mid-temperature cli-
mates, and the largest negative effects in hot climates. The evolution of these
impacts over time is less commonly depicted and here produce a pattern qual-
itatively similar to those reported in NRK wherein per capita GDP appears to
stay persistently depressed over the entire projection horizon. The second
row depicts the same IRFs annualized by scaling down estimates by their cor-
responding horizon h+1 to more clearly depict convergence behavior relative
to the contemporaneous effect of the shock.

Of course, the standard bias-variance tradeoff applies so that the attrac-
tive flexibility features described above come at the cost of efficiency; IRFs
estimated by single-equation local projections are fundamentally noisier than
their fully parametric and structural counterparts such as vector autoregres-
sions4.

Importantly, the LP model imposes a linearity assumption on effects esti-
mated within the same horizon. Since the shock enter additively into (2), re-
sponses to the shock are assumed to scale proportionally so that a 1◦C shock
has exactly twice the effect of a 0.5◦ shock and the exact negative of the effect
of a -1◦C shock. In reality, non-linearities abound in the interactions between
social and climate system (Dietz et al., 2021). Additionally, the linearity as-
sumption imposes the same symmetry in the state interaction term so that
relative to the reference temperature, estimated interaction effects for states a
given number of degrees warmer than the reference temperature will always
be the exact negative of those for states the same number of degrees cooler.
In Figure 2, this is reflected in the fact that for a given horizon h, the point
estimates in green will always be the exact average of those in blue and red
since they are estimated from the same linear regression model.

4Different compromises in this tradeoff can be obtained by imposing additional restrictive
parametric assumptions such as the functional approximation approach of Barnichon and
Matthes (2018) which can substantially narrow the error bands.
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It is worth noting that our empirical estimates are expressed in terms of
responses to a 1◦C shock, which is substantially larger than a shock we would
expect to observe in a single year as we showed in Figure 1. The median
absolute value of a shock (whether positive or negative) varies by the rate of
climate change which will in turn vary across states and time. For the warmest
33% of country-years, the median shock was approximately 0.19◦C in absolute
value in the 1970s and then increased to between 0.30-0.37◦ in the ensuing
decades and so hot-country effects can be understood as corresponding to a
shock 3-5 times larger than one would expect to occur in those climates in a
given year. For the coldest 33% of country-years, the median magnitude of a
shock was about 0.35◦C in the 1970s and 1980s, 0.51-0.53◦C in the 1990s and
2000s, and 0.59◦C in the 2010s. Their effect sizes then can be interpreted as
just 2-3 times larger in magnitude than the median shocks.

Global inequality effects of climate change thus are not just dependent on
the shape of the impulse response responses across quantiles but also the dis-
tribution of warming over space and time as well as the actual distributions
of incomes across quantiles. The simulation exercises to be described in Sec-
tion 3 are valuable because they account for four relevant climate inequalities:
inequality of temperature effects across an income distribution, inequality of
incidence of temperature effects across different climates, inequality in the
global distribution of income, and spatial inequality in the incidence of abso-
lute warming.

2.2 Inferring persistence from local projection estimates

The error bands depicted in Figure 2 reflect pointwise estimation imprecision.
This estimation imprecision is particularly important to include in this context
since the volume of regressions underlying an LP-IRF precludes convenient
summarization in a standard regression table.5 One may be tempted to infer
from the fact that the hot-country bands in red do not intersect the horizontal
axis over the entire projection horizon that these estimates constitute signifi-
cant evidence to reject a null hypothesis of level effects which persist for less
than 15 years.

However, the uncertainty depicted by error bands correspond to individ-
ual hypothesis tests. Since estimates and residuals across an IRF are serially
correlated—for example, the green bands straddle the horizontal axis but all
estimates are negative— the relevant test of significance is a joint hypothe-

5For example, the results depicted in Figure 2 derive from 16 different regressions. Later
results derive from as many as 91. All graphically depicted errors and significance tests
presented in this paper correspond to a significance level of α = 0.1.
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sis test not captured by pointwise error except at horizon h = 0. Focusing
on the impulse response corresponding to the main effect, the significance of
the main effect of the impulse response Rτ→y(h) amounts to testing the null
hypothesis that all main effects up to h are 0:

H0(h) : β1,0 = β1,1 = ... = β1,h = 0

Since the number of coefficients being considered in the joint hypothesis
increases in h, the coverage of the joint hypothesis test must be adjusted for
the inclusion of each additional horizon to compensate for the problem of
multiple hypothesis testing. Inverting the null hypothesis, Inoue et al. (2024)
derives convenient estimators for the implied “significance band” defined to
satisfy the following condition:

P

[
H⋂

h=0

{
ζ α

2(H+1)

σh√
T − h

< β̂h < ζ1− α
2(H+1)

σh√
T − h

}]
≥ 1− α

The scaling of the significance level α by 2(H + 1) is an implementation of
the Bonferroni correction. In practice, rejecting the null for the main effect cor-
responding to horizon h+1 is sufficient to reject the null of non-persistence up
to horizon h. Graphically, these bands are represented by a region straddling
the horizontal axis such that estimates of β1h contained within it are insuffi-
ciently large enough to reject the hypothesis of a null effect that the impulse
response persists up to period h, analogous to the bands drawn to measure
persistence in time series correlograms. The width of these bands increases
with the projection horizon, corresponding to the fact that for each projection
horizon, the available estimation sample is reduced by one period (in the case
of a perfectly balanced panel).

These significance bands are specific to the main effect and are represented
by the gray regions in the middle panels of Figure A6a. Since ours is a state-
dependent model, I derive equivalent significance bands specific to the inter-
action effects. These are defined relative to the point estimates of the main
effects and are depicted by the gray regions in the panels on the left and right.
Points outside these regions are considered sufficient to reject the null hy-
pothesis that interaction effects do not persist up to h periods. By the linearity
assumption, the null hypothesis of zero interaction effects for a 10◦ climate is
rejected if and only if it is rejected for a 26◦ climate.

For comparison, Figure A6b depicts a placebo test where I construct bands
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to implement significance tests equivalent to those described above to test the
persistence in the effect of temperature on another widely available and po-
tentially non-stationary growth rate: that of population. As I am not aware
of any theory or evidence to suggest temperature shocks would meaningfully
impact country-level population growth6, we should expect the tests to re-
turn precise null results. Indeed, we find with all point estimates resulting
from two separate population datasets easily contained by the corresponding
significance bands. Notably, if we were to misuse the error bands as indica-
tors of statistical significance, we would misinterpret the estimated IRFs as
evidence to reject the null for large subintervals of the projection horizon for
mid-temperature and hot climates. Instead, the entirety of these error bands
are easily enveloped by the significance bands.

Since including significance bands, color-coded error bands, and point es-
timates for multiple IRFs can clutter space, I adopt a convention of omitting
the significance bands entirely and instead coloring black the point estimates
which are located outside the implicit error bands. In all IRFs beginning with
those depicted in Figure 2, rounded points correspond to significant main ef-
fects while asterisks correspond to significant interaction effects. By this mea-
sure, these results cannot reject the null hypothesis of one-period level effects.

2.3 The state-dependent temperature multiplier

Another reason to prefer temperature shocks to levels of temperature as treat-
ment variables is that models which use the latter neglect to sufficiently ac-
count for autocorrelation in temperature itself when estimating dynamic ef-
fects (Nath et al., 2024; Bilal and Känzig, 2024). An analogy can be drawn to
the estimation of multipliers in empirical macroeconomics: when estimating
the impulse response of, for example, GDP to a fiscal policy shock, one must
account for the tendency of stimulus programs to be implemented in stages
or to be followed by additional stimulus. Otherwise, the effect sizes implied
by simple impulse response functions misattribute cumulative changes in the
outcome only to the initial unit shock; multipliers scale these effects at each
horizon by the corresponding accumulation of shocks.

Figure 7a depicts the impulse response of temperature shocks to a pulse of
itself for our three representative climates. Each exhibits very similar persis-
tence patterns across two independent temperature dataset. An application
of the persistence test covered in Section 2.2 implies autocorrelations which

6While there is an established literature on climate impacts on mortality rates (Barreca and
Shimshack, 2012; Barreca et al., 2016; Carleton et al., 2022), absolute magnitudes are minis-
cule relative to total populations
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persist for up to 10 years though only the first 1-2 periods are qualitatively
large (approximately 21% and 9% respectively with insignificant heterogene-
ity across climates).7 Cumulative multipliers are estimated in order to scale
down the estimated impulse response of GDP Rτ→y(h) by the impulse re-
sponse of the shock to itself Rτ→τ (h) to account for this dynamic treatment
schedule.

Cumulative responses are traditionally computed by first constructing cu-
mulative versions of the two IRFs: Rc

τ→y(h) :=
∑h

j=0Rτ→y(j) for the outcome
of interest y and Rc

τ→y(h) :=
∑h

j=0Rτ→τ (j) for the shock τ̂ . Then the cumu-
lative multiplier mτ→y(h) would be calculated as the ratio Rc

τ→y(h)/Rc
τ→τ (h).

However, this approach has a couple of inconvenient downsides. First, as
noted by Jordà (2024), computation of standard errors of a ratio of two ran-
dom variables is complicated and non-standard. Second, it is computationally
inefficient in the sense of requiring 2(h+1) (or 4(h+1) in our state-dependent
case) separate local projections to obtain the corresponding multiplier for each
projection horizon h.

Instead, we follow the recommendation to use the one-step method de-
scribed in Ramey (2016) and applied in Ramey and Zubairy (2018). We adapt
the method for our state-dependent setting through the procedure summa-
rized by the algorithm summarized in Algorithm A1.

We can use the resulting coefficients to trace a cumulative multiplier func-
tion Rc

τ→y(h;T ) analogous to (3) but which accounts for the effect of persis-
tence in the shock. Since estimation of the coefficients follows directly from
a system of local projection regressions, standard inference is preserved and
the significance testing methods outlined in Section 2.2 are equally available.
Figure 3b demonstrates an application of the method to estimate temperature
multipliers of GDP. The estimated multiplier over horizon h is interpreted as
the difference in cumulative GDP over the h periods following an isolated 1◦C
shock relative to a counterfactual where the shock had never occurred.

Estimated cumulative multipliers are found to be substantial at larger hori-
zons but the significance band test cannot reject a null of non-persistence be-
yond one period. 90% confidence intervals for the effect of an identified tem-
perature shock on cumulative GDP are [−0.49, 1.1] percent for 10◦C climates
and and [−2.7,−1.1] percent for 26◦C climates.

7This contrasts with the finding of NRK who measure shock persistence using levels of tem-
perature to infer that temperature shocks remain 10-20% higher for at least nine years fol-
lowing a unit shock.
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Figure 3: Accounting for persistence of temperature shocks

(a) Persistence of temperature shocks

(b) State-dependent temperature multiplier of output

The cumulative multiplier is interpreted as the change in cumulative GDP
over h periods attributable to a unit shock in τ̂ , net of its impact on fu-
ture shocks τ̂ . Annualized multipliers represent the same estimates but
divided by the projection horizon for visual convenience.
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2.4 Data

Having demonstrated how our empirical approach may complement and build
on the vast existing literature on the aggregate economic impacts of weather
shocks, we now apply the same techniques to a relatively unexplored setting.
Providing new evidence on the distributional effects of identified temperature
shocks within countries and globally.

Income

This analysis is made possible by grouped income data published by the
World Inequality Database (World Inequality Lab, 2024), the successor to the
tax data-based World Top Income Database which launched in 2011 with data
on over 30 mostly Western countries. A critical difference between the two
products was the development of a system of standardizing the integration of
tax, national accounts, and survey data (Piketty et al., 2019) modeled after the
System of National Accounts (European Commission et al., 2008). This newer
generation of inequality data extends coverage within those countries—now
claiming to capture “100% of income” in the United States (Piketty et al.,
2018)—and rapidly extending coverage and comparability to countries with
relatively limited available data. By 2019, historical data for over 120 countries
had been incorporated into the database. As of this writing, their equal-split
adult pre-tax income series was available for 215 countries and territories col-
lectively representing almost the entire global population with distributional
data imputed every year since 1980. All incomes are converted to 2023 US
dollars using the provided PPP-adjusted exchange rates.

Accompanying metadata scores the availability and reliability of each cate-
gory of input source by country, unsurprisingly indicating that the input mix
of these sources varies substantially by country. Notably for the percentile-
level panels, the income data exhibits substantial bottom-coding with almost
every country-year reporting exactly zero income for at least the bottom four
percentiles of the pre-tax income distribution. Even if an accurate measure
of adult unemployment, this evokes well-known deficiencies of income as an
identifier and as measure of poverty compared to alternatives like consump-
tion expenditures (Meyer and Sullivan, 2003). For example, while the unem-
ployed subpopulation of a given economy may well be composed of the most
impoverished, it is likely to also include individuals of all levels of precarity
and social status and does not account for security provided by communal
and social safety nets. It also positively biases estimated changes in welfare
among the poor since zero incomes mechanically cannot decrease.

Given these inherent disadvantages of income measures for representing
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poverty, we intentionally do not make specific claims about the poverty im-
plications of our findings. Instead, we consider the incomes of the bottom 10
percentiles as a group in all analyses and consider estimated impacts for this
quantile to be a conservative bound on true impacts on the very poorest be-
cause it implicitly assumes perfect equality among its constituent population
(Cowell, 2011).

Climate data

We merge all income data with an annual panel of population-weighted near-
surface air temperature data derived from the Global Meteorological Forc-
ing Dataset for Land Surface Modeling (GMFD). This data corrects model-
based biases in NCEP/NCAR reanalysis product using observational mete-
orological station data (Department of Civil and Environmental Engineer-
ing/Princeton University, 2006). The GMFD reports historical weather data
for the entire global surface at 0.25-degree resolution8 for every three hours
from the start of January 1, 1948 to the end of December 31, 2015.

2.5 Within-country distributional effects

The first set of distributional results we present proceeds similarly to the expo-
sitional GDP regressions in Section 2.3 but with separate implementations for
each within-country quantile q of interest (e.g., country deciles or percentiles).
For every discrete income quantile q, we estimate the H + 1 state-dependent
local-projection regressions for horizons h ∈ {0, 1, ..., H} described by the fol-
lowing single-equation model:

∆c
hy

q
i,t+h = mq

1,hτ̂
c
i,t+h +mq

2,hτ̂
c
i,t+hT it + λhT it + Zq

itγ
q
h + µi + ηt + εqi,t+h (4)

Here, variables denoted by a superscript c are cumulative variables con-
structed using the one-step process described in Algorithm A1 to calculate cu-
mulative effects which account for the persistence of temperature shocks. The
quantile-specific matrix of controls Zq

it include lags ℓ ∈ {1, ..., L} of the shocks,
the interaction of the shock with the state variable, the outcome ∆yqi,t−ℓ, and
country-level aggregate growth ∆yi,t−ℓ. Multiplier estimates {m̂1,h+m̂2,hT it}Hh=0

describe the effect of an identified temperature shock on the cumulative stock
of outcome yq after h periods as a function of the expected temperature.

8At this resolution, cells near the equator are approximately 27 km2 (17 mi2).
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Figure 4: Cumulative income response to a 1◦C shock
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For example, panel (a) of Figure 4 summarizes the results of estimating
separate sets of cumulative temperature multiplier functions for each of 10
within-country deciles. Here, color-coding follows the same intuitive scheme
as previous plots with blue and red corresponding to representative expected
temperatures of 10 and 26◦C respectively9. The points in asterisks indicate
significant interactions which impose differentiated effects based on expected
climate. These effects persist for between 1-3 years, concentrating negative
impacts in hot countries while keeping cooler countries relatively insulated,
consistent with the aggregate results standard in the climate literature and the
dynamic GDP results reported in Section 2.3. Estimation error is larger than
when estimating GDP impacts in Figure 3b, unsurprising given the difference
in temporal coverage and data quality.

Importantly, we are now able to compare impacts across quantiles within
countries. Focusing on hot-climate countries, the estimates reported in Panel
(a) imply an incidence pattern wherein negative effects of a transitory tem-
perature shock to hot countries are found at all quantiles but are particularly
dire at the bottom. For 26◦C countries, the 90% confidence intervals for the
impact of a temperature shock on cumulative income a year after the shock
is [−10.0,−2.9] percent for the bottom decile compared to [−3.2, 0.3]% for the
second decile. This generally improves as one moves up the income distri-
bution, stabilizing at approximately [−2.4, 0.6] percent by the fourth decile
through to the 99th percentile. Interestingly, the estimated impacts then dis-
continuously drops to [−3.9,−0.5] for the richest percentile. Panel (b) shows
this discontinuity within the top decile and also indicates this effect is sig-
nificantly persistent for two additional years. In contrast, cumulative growth
incidence is much flatter across the income distribution with point estimates
suggesting positive impacts are somewhat larger for the middle classes be-
tween the third and sixth deciles.

Figure 5a and the bottom panel of Figure 5b capture these discontinuities
at the extremes more clearly by plotting point estimates of percentile-level im-
pacts over time for our three representative climates. These figures imply that
negative expected impacts to hot countries are indeed concentrated on both
the bottom 10% and the top 1% of the distribution10. To the best of my knowl-
edge, this particular vulnerability of the highest incomes in hot and generally

9We omit the green 18◦C main effect to avoid over-busy plots, but it is of course implied as
the average of the two depicted curves

10As mentioned in Section 2.4, the income data for the bottom 10% is not well suited for
decomposition into percentile effects but one would expect an ideal decomposition would
reveal a similarly steep within-decile gradient in which negative impacts are driven by the
poorest percentiles within the bottom 10%.
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poor countries to transitory environmental shocks has not been previously
observed or theorized although it is consistent with recent work outside envi-
ronmental economics demonstrating this group’s disproportionate sensitivity
to aggregate conditions even compared to other members of the top income
decile (Roine et al., 2009; Alvaredo et al., 2018). In ongoing work, I investigate
the extent to which this may be driven by weather-induced capital depreci-
ation, capital shares in agricultural income, and the relative unavailability of
weather derivatives in these settings.

This first set of new results describe inequalities in the growth incidence
of impacts across a national income distribution as a function of the local cli-
mate. The disproportionate impacts to the bottom decile strongly imply a
regressive effect: In the aftermath of an isolated temperature shock, a repre-
sentative member of the the bottom decile in a 26◦C country can expect to earn
7% less in total over the next three years than they would had the shock never
occurred. This compares to losses of 2.2% for the median adult in their coun-
try and a gain of 3.0% for their counterpart in a country with a 10◦C climate.
At the same time, a representative member of the 100th percentile in the same
26◦C country, represented by the thinnest sliver at the top of the rightmost
distributional contour plot in (b), can expect to earn 5.9% less over those three
years than they would otherwise compared to 3.6% for the 99th percentile.

While these results strongly imply substantial redistributive effects from a
temperature shock, their implied effect on inequality depends both on the ini-
tial distribution of income shares across quantiles and the measure of choice,
especially given that growth effects are non-monotonic in income quantiles.
Figure 6 depicts the annualized effect of a temperature shock on various mea-
sures of inequality. Units are not directly comparable across measures but all
measures are increasing in (their respective conception of) inequality. Mea-
sures are provided in order from the most sensitive to redistribution of top
incomes (the Theil index) to the most sensitive to redistribution of bottom
incomes (the mean logarithmic deviation index).

The filled circles in the middle column drawn with green error bands cor-
respond to significant main effects of the temperature shock on the given
measure of inequality. The asterisks on the plots on either side correspond
to significant interactions, measuring linear heterogeneity by expected tem-
perature. In light of the growth incidence results just discussed, the near-zero
impacts to cold-country inequality and substantial effects to hot-country in-
equality are unsurprising. Null effects on the Gini index, known to be rela-
tively insensitive to changes at either end of the income distribution, are con-
sistent with the disproportionate impacts to the bottom 10% and top 1%.

By the Theil index, a transitory temperature shock appears to actually im-
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Figure 5: Point estimates of cumulative income growth incidence responses
to a 1◦C shock

(a) Incidence patterns for three representative climates

(b) Aggregate vs. distributional responses
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Figure 6: Inequality index response to a 1◦C shock
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prove inequality while inequality as measured by the ratio of incomes of the
top 20% to the bottom 20% and mean logarithmic deviation both suggest the
opposite 11. From the previous analysis, we can surmise that the progres-
sive effect on the Theil index is being driven by the transfer away from top
1% while for the other two measures, the regressive transfer of income shares
away from the bottom 10% outweighs this ‘improvement’ in inequality. While
the impacts to the bottom 10% are substantially larger proportionally and rep-
resent a population segment 10 times as large, for the Theil measure, the dis-
proportionately large share of income originally held by the top 1% consti-
tutes a large enough share of total national income that these measures dis-
agree on the net effect on inequality12. Of course, since the overall effect on
income is negative at all percentiles for hot countries, these inconsistencies
amount to differently equitable shares of a strictly smaller national income.

3. Climate change and global inequality

Here, we consider the implications of the within-country effects of transitory
temperature shocks estimated in Section 2 to estimate the effect of anthro-
pogenic climate change on global inequality. This involves accounting for
observed distributions of global income across country-quantiles, the expo-
sure of populations to different climates, and the spatial distribution of global
warming. In Section A1, we further decompose these inequality effects by the
relative contributions of human activity and natural factors to temperature
shocks.

First, for the observed history of country-year weather variables, we calcu-
late the corresponding sequence of shocks and states (1a) and (1b). Then for
every within-country quantile from the 11th to the 100th percentile, we col-
lect B bootstrap estimates of the effect of a pulse of temperature on country-
quantile incomes estimating (4) through the procedure in Algorithm A1 and

11As economic intuition, one may think of the mean logarithmic deviation as a measure of
average disutility arising from the given distribution of income compared to a perfectly
equal distribution of the same total income, assuming logarithmic utility.

12One way to think about the Theil measure is as a fundamentally geometric measure of
inequality. For any given income distribution, someone with income $100,000 giving $10
to someone with income $10,000 would improve the Theil index measure of inequality by
the exact same amount as someone with a $1,000 income giving the same $10 to someone
with income $100 because the ratio of incomes between the donor and recipient are the
same (Cowell, 2011). By the same principle, a $100 income earner regressively transferring
10% of their income to a $1,000 income earner would offset the progressivity of a $100,000
income-earner transferring a ten-thousandth of their income to a $10,000 income earner.
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by the persistence H of this effect using the significance test in Section 2.2. We
construct a bootstrap-specific growth differential variable which computes
the cumulative income effect of temperature shocks observed contemporane-
ously and over the preceding H periods. Finally, for every country-quantile-
year between 1981 and 2016, we iteratively construct the next year’s bootstrap-
specific counterfactual income by subtracting the calculated growth differen-
tial from the observed level of growth and applying the residual growth rate
to the previous year’s income.

Upon constructing these counterfactual series, each bootstrap b assigns
each country-quantile-year to a global percentile corresponding to their population-
weighted income ranking across the global income distribution for that year.
Finally, we calculate the long-term growth between 1981 and 2016 implied
by each series for each bootstrap series. The resulting long-term growth inci-
dence curve is depicted in Figure 7a.

Here, the historically observed level of growth over this period is repre-
sented by a black filled line, reproducing a version of the “elephant curve”
famously documented in Lakner and Milanovic (2016). The blue band depict
the 90% confidence interval for the counterfactual removing the influence of
temperature shocks on income. Regions where this band is above the ob-
served incidence curve imply deprivations of income attributable to the inci-
dence of temperature shocks over this period. Point estimates imply probable
net harm for around 65% of the global sample.

Despite proportionally milder absolute warming in the poorest countries
(see Figure A1), this negative incidence still concentrates on the world’s poor-
est 20%, representing 1.2 billion people in our 2016 sample and mostly lo-
cated in warm developing countries. Importantly, as in Alvaredo et al. (2018),
calculations underpinning this figure omit the bottom 10% of each country’s
income distribution because of the inclusion of unemployed adults and com-
positional instability effects which arise from assigning deciles of very large
populations to percentiles representing smaller populations. For the poor-
est percentile in our data, we find that incomes absent these disproportionate
temperature shocks would be 29% [18, 41] higher than they are today. As these
effects exclude precisely the subpopulation we have already found to be the
most economically vulnerable to temperature shocks, this growth incidence
curve should be interpreted as a likely very conservative estimate of depriva-
tions to the global poor.

Elsewhere, estimates also imply likely harm from warming for the 52nd-
97th percentiles. That the top 3% are relatively unaffected despite the neg-
ative effects for the top 1% in Section 2.5 is because these groups are domi-
nated by extreme incomes in relatively cold countries. Effects on the global
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Figure 7: Global inequality, observed vs. zero-warming counterfactual

(a) Global incidence of growth, 1981-2016

(b) Global inequality indices, 1981-2016
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middle class are relatively tempered with slightly positive point estimates
estimated for essentially the entire second quartile, also consistent with the
within-country incidence curves which found the middle class experienced
the mildest economic impacts across all climates.

Despite these different-signed effects, the counterfactual growth incidence
band is noticeably flatter than the elephant curve, implying that historical cli-
mate change has been globally regressive in addition to being a likely drag on
total growth. Figure 7b plots the time series for the global equivalents of the
within-country inequality measures introduced earlier. In our within-country
analysis, we identified opposing regressive transfers from the bottom decile
and progressive transfers from the top decile which opposed one another to
produce contradictory effects on within-country inequality depending on the
measure of choice. In comparison, the historical effects of these shocks on
global inequality are large and regressive across all measures, increasing the
global Theil index by 0.9% [−1.8, 2.8], the Gini index by 0.5 points [−0.2, 1.0],
and the mean logarithmic deviation index by 3.9% [1.6, 6.4].

Figure 8 decomposes these effects on global inequality into their within-
country and between-country dimensions. Panel (a) compares the observed
(black dashed line) and counterfactual (filled colored bands) evolution of these
entropy-based decomposable measures in levels. As measured by mean log-
arithmic deviation, which is relatively sensitive to the welfare of low-income
quantiles, observed temperature shocks have unambiguously exacerbated both
varieties of inequality decreasing within-country inequality by 2.6% [0.0, 5.6]
and between-country inequality by 8.7% [4.9, 13.3]. For the Theil index, the
relative sensitivity to negative impacts to top incomes observed in Section 2.5
re-appear, resulting in an estimated 1.3% [-1.3, 3.8] improvement in within-
country inequality as a result of temperature shocks. These same shocks still
worsen between-country inequality by 6.1% [3.6, 9.0].

Panel (b) adopts the same color scheme to visualize their relative contri-
butions to global inequality. The dashed black lines trace the stark observed
trend of within-country inequality (teal) increasingly dominating between-
country inequality (red) since 1981. The region in white separating the two
colors corresponds to the counterfactual shares had average temperatures
remained fixed since 1981. That these white regions are entirely under the
black dashed lines imply that warming since 1981 has very likely slowed this
trend by reducing the within-country share of global inequality by between
1.1 percentage points [0.1, 2.0] by the MLD measure and 1.6 percentage points
[0.7, 2.5] by the Theil index. Thus, the incidence of temperature shocks primar-
ily influence the global distribution income by slowing convergence between
countries.
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Figure 8: Global inequality between and within countries, 1981-2016
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Finally, I note here that these results correspond to impacts of climate
change insofar as it is sufficiently well-captured by asymmetries in temper-
ature shocks over time. Section A1 presents additional results decomposing
these effects into anthropogenic and natural contributions by applying meth-
ods from climate attribution science to output from state-of-the-art climate
models, arriving at largely the same conclusions.

4. Conclusion

The results presented in this paper constitute the first comprehensive evi-
dence of regressivity in the global incidence of climate change, complement-
ing an expansive and active economic literature which has remained effec-
tively agnostic on global distributional impacts at subnational levels. By im-
porting methods recently developed in empirical macroeconomics to distribu-
tional data thus far largely unused in environmental economics, we were able
to overcome several long-standing statistical and practical constraints which
have long obstructed progress on this urgent research question.

Given the sparsity of other work on this broad topic, several limitations
of the present study suggeset avenues for potentially fruitful future research.
Firstly, even the impressive coverage of the World Inequality Database is fun-
damentally limited in its ability to speak to the most important of distribu-
tional considerations, namely the impacts of climate change on global poverty.
Our evidence affirms and quantifies the conventional understanding that the
world’s poorest have been and will continue to be by far the most severely
impacted by climate change. But due to the limitations of pretax income as a
measure of poverty and welfare, even these impacts are likely to be a conser-
vative lower bound on true impacts.

In revisions in progress, the distributional analysis reported here will be
supplemented by an analysis of compositional effects identifying which in-
come groups from which countries have been transitioning up and down the
global income distribution as a result of climate change. If income effects
are as severe and state-dependent as described here, then it becomes plau-
sible that an important distributional consequence of climate change is that
inhospitable environments becomes increasingly deterministic of economic
development, severely limiting the upward mobility of populations in hotter
climates.

To the best of my knowledge, the vulnerability of the highest incomes in
hot and generally poor countries to transitory environmental shocks has not
been previously documented or theorized. Weather-induced capital depre-
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ciation, capital shares in agricultural income, and the relative unavailability
of insurance instruments such as weather derivatives in developing countries
are example plausible mechanisms that call for empirical testing.

From a policy perspective, the results presented in this paper suggest that
incorporating equity considerations as through a concave utility function would
indeed increase the social weighting of the most impacted by climate change.
But it is may still be worth taking seriously criticisms that a “profound in-
difference to inequality” (Sen et al., 2020) remains embedded even in these
progressive varieties of cost-benefit analyses predominant in the climate eco-
nomic literature. For example, Prest et al. (2024) show that one proposed im-
plementation would increase the US government’s official estimate of the so-
cial cost of carbon by a factor of eight. But somewhat paradoxically, these
greater cost estimates are primarily used to prescribe an increased price on
carbon which may then disproportionately burden these same segments of
the population whose increased welfare weight induced the inequality-exacerbating
policy. Equity weighting should of course factor into both the estimation of
costs and the design of policy internalizing them.

To this end, it is intuitive that democratic pressures and a richer portfolio
of policy instruments should be more effectively mobilized domestically than
coordinated across a Westphalian international system (Barrett, 2003; Levin et
al., 2009; Keohane and Victor, 2011). If so, levers available domestically but
not internationally—such as compensatory fiscal transfers—may yet emerge
as vital instruments of climate policy.
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A1. Anthropogenic attribution

To attribute a global inequality effect to historical anthropogenic climate change,
we implement a counterfactual analysis decomposes observed temperature
effects into their natural and anthropogenic contributions, adapting methods
commonly used in climate attribution science.

A1.1 Climate simulation data

Climate simulation data come from the contributions of climate modeling
groups to the World Climate Research Program’s Coupled Model Intercom-
parison Project (CMIP). The CMIP, initiated in 1995, is a framework to coordi-
nate, standardize, and disseminate the results of state-of-the-art simulations
of the global climate for the benefit of the international climate research com-
munity. Data used in this study comes from CMIP6, the sixth and newest13

generation of models (Eyring et al., 2016). Data is provided as a collection of
globally gridded time series summarizing the joint evolution of several hun-
dred climate variables under various pre-specified calibrations. We will pri-
marily be interested in the models’ simulations of near-surface air tempera-
ture.

All participating models are “coupled”, meaning that they explicitly ac-
count for interactions and feedback between distinct components of the global
climate system such as the atmosphere, the cryosphere, land surface, and the
ocean. Because the manner in which this integration is achieved is idiosyn-
cratic to each model, computationally expensive, and highly sensitive to ex-
ternal calibrations, coordinating the set of “experiments” that participating
models run is necessary for comparability and interpretability. For example,
one of the four indexes which define an experiment is the realization index
which corresponds to the set of geophysical initial conditions at the begin-
ning of the simulation period. By holding the initial conditions fixed, dif-
ferences in results across models within the same experiment can be more
readily attributed to the distinguishing features of the model without being
confounded by differences in implementation. Similarly, differences in the
same climate model’s results across different perturbations to the initial con-
ditions provide a measure of the model’s internal variability. The CMIP thus
provides a systematic way of decomposing total variation across models and
experiments both internal and external to the model. Coordination also en-
ables identification of systematic and idiosyncratic biases in model designs
that then inform the next generation of models.
13After a delayed rollout, outputs from most CMIP6 models were made accessible by 2022
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Figure A1: Model-implied spatial distributions of global warming, 1980-2014

Simulated spatial distribution of anthropogenic warming for eight ran-
domly selected climate models. The bottom-right plots the average distri-
bution for all 13 CMIP6 models which ran both historical and historical-
natural simulations.
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Among the other three indexes which define an experiment, the forcing
index is central to our counterfactual analysis. Forcings are factors which af-
fect the net transfer of radiative energy in the climate system, essentially the
energy the Earth receives from the sun minus that which it expels back into
outer space. Anthropogenic forcings include, for example, industrial green-
house gas emissions, deforestation, and the transformation of land for arable
agriculture. Natural forcings include aerosol expulsions from major volcanic
activity and variation in solar irradiance such as those associated with the 11-
year solar cycle.14 Comparing simulations which only differ in their forcings
allow one to attribute differences in outcomes to the differences in forcings;
we describe next how comparisons of this kind form the basis of both our
historical and projection counterfactual analyses.

A1.2 Construction of historical counterfactuals

Our historical counterfactual analysis uses simulations from a category of ex-
periments called “historical runs”. For the CMIP6 generation of models, his-
torical simulations begin at a pre-industrial baseline period in 1850 and run
through to 2014. Among the forcing scenarios used in these historical experi-
ments is one simply labeled “historical”, which attempts to represent the im-
pacts of influential forcings actually imposed on the climate system over this
period, such as the deforestation of the Amazon rainforest and the eruptions
of Krakatoa in 1883 and Mt. Pinatubo in 1991. Results from this historical
run are required of all participating CMIP6 models since these “hindcasts”
can be directly compared to observational data in order to evaluate model
accuracy. Models collectively perform remarkably well at reproducing the
historical record (Zhou et al., 2020; Zelinka et al., 2020; Liu et al., 2021). For
this reason, studies which use CMIP data for the purpose of counterfactual
analysis are advised to include the full available “multi-model ensemble” for
experiments of interest (Tebaldi and Knutti, 2007; Knutti et al., 2010; van Vu-
uren et al., 2006).

A subset of these models also simulate a set of optional ‘historical-natural’
experiments which are defined identically except with anthropogenic forcings
held fixed at pre-industrial levels. The differences between the two forcings
by the same model holding all other variables fixed is then interpreted as the
model’s simulation of anthropogenic contributions to climate change. Com-
parisons between historical and historical-natural experiments are commonly
used in the subfield of attribution science concerned with quantitatively mea-
14Natural forcings are distinct from sources of natural variability such as the ENSO cycle

because they are external to coupled climate models.



45

suring anthropogenic contributions to the intensity, frequency, or probability
of weather events or trends.

For each climate model m and country i, we use an observed series T and
the two model-specific historical series T hist and T nat to construct a counter-
factual series T̃ where anthropogenic forcings have been held fixed since the
first year of the simulation period. The iterative process is summarized in Al-
gorithm A2 and illustrated in Figure A2 using data from the Philippines as
an example. In panel (a), differences between model-specific simulations of
national temperature when including all forcings (orange) and when exclud-
ing anthropogenic forcings (green horizontal axis). Local regression fits are
depicted in red. Light-blue shaded regions correspond to 30-year reference
periods used to define temperature normals (dark blue dots) for the start and
end of the simulation period 1980-2014.

In panel (b), The linearized difference between normals depicted as dark
blue lines in (a) are subtracted from the observed temperature series (black)
starting in 1980 to produce counterfactual temperature series (green). Each
of these is interpreted as the temperature history that would have been real-
ized had anthropogenic forcings been held fixed at 1980 levels according to a
specific model of the climate system.

In panel (c), linearizing the difference between the climate normals de-
fined at either end of the simulation period and subtracting the result from
an observed temperature series implements the standard “delta method” for
constructing bias-corrected climate counterfactuals. Counterfactual economic
series for a random selection of five climate models are depicted in green and
are constructed by iteratively applying the decile-level dynamic income re-
sponses depicted in Figure 4 to the observed and counterfactual temperatures
depicted in (b). Their difference is interpreted as the change in income at-
tributable to anthropogenic forcings since 1980. Green bands correspond to
90% confidence intervals generated from 500 bootstrap estimates of the re-
sponse functions.
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Figure A2: Constructing historical counterfactuals holding anthropogenic
forcings fixed at 1980 levels

Demonstration of the delta method for constructing bias-corrected coun-
terfactuals using data for the Philippines as an example.
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Figure A3: Anthropogenic growth incidence curves by climate model, 1980-
2014
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Figure A4: Anthropogenic influence on within- vs. between-country in-
equality by climate model
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A2. Empirical methods

A2.1 Growth vs. level effects

Figure A5: Levels and growth under different persistence structures

Each column corresponds to a different possible dynamic path of a tem-
perature shock in period 0 on an outcome measured in levels (top panels) and
annual growth (bottom). Black and red lines depict the evolution of the out-
come variables in the absence and presence of a unit shock in period 0 respec-
tively under the different described dynamics. Filled areas in orange measure
the cumulative difference in the outcome attributable to the shock. In the con-
text of climate change, these represent the long-term damages associated with
a temperature shock.

Under a one-period level effect, the level of, say, GDP falls by an estimated
level β̂0 iin the year of the shock but fully recovers to trend in the next pe-
riod. All lost production is compensated for in the next period by virtue of an
above-trend rate of growth which exactly offsets the negative growth effect in
the year of the shock. The shock has no effect on future production and the
area in orange represents a one-off economic loss from the shock.
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Under the constant growth effect depicted in the rightmost panels, the
same shock incurs the same effect on the levels but this effect is permanent
so that GDP in all future periods is reduced by the same amount relative to
the no-shock counterfactual. The difference between the two trajectories thus
compound over time as observed by the orange area which grows linearly
over time. The growth effect depicted in the bottom panel is entirely transi-
tory.

The middle column describes the intermediate case where the economy re-
quires several periods to return to its pre-shock trend. Cumulative differences
attributable to the one-off shock continue to rise over time but to a diminish-
ing degree until eventually compensatory positive growth exactly offsets the
initial negative growth, i.e., the integral of the growth curve equals zero in the
long run.

Now consider the following two models, which we may refer to as the
levels and growth models respectively.

log Yt = βLXt + vt (5a)

∆Yt = βGXt + ut (5b)

In the levels model, βL represents the difference between the observed
level of GDP and the GDP that would have occurred had a unit shock in pe-
riod 0 not occurred. Graphically, it is the vertical distance between the black
and red lines in the levels panels. Since this is an entirely static model, there
is no mechansim for X to affect future values of Y and so the model assumes
a perfect return to trend in all ensuing periods. In the growth plots, this is
represented by a βL − 0 = βL effect in period 0 and an exactly offsetting
0 − βL = −βL effect on growth in period 1 and no effect on growth in all en-
suing periods. Level effects which persist for p periods can be accommodated
by including p additional lags of X in the model. A permanent growth effect
can only be accommodated with the inclusion of infinite lags.

In the growth model, βG ̸= 0 represents a permanent change in the differ-
ence between consecutive values of Yt; the gap between the black pre-shock
trend line and the observed GDP series stays fixed at βG for all periods fol-
lowing the shock and is never offset. Level effects which persist for p periods
can be accommodated by including p lags of X and finding that the sum of
the p+ 1 coefficients is exactly 0

A2.2 Testing for persistence using significance bands



51

Figure A6: Impulse responses to a 1◦C shock, including significance bands

(a) GDP impulse response

(b) Placebo test: national population response
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A2.3 Construction of inequality indices

Inequality data from the World Inequality Database is provided at the country-
percentile level with variables reporting averages, minimums, maximums,
and shares of national income. As grouped data, its use for the construction of
inequality indices still requires the modeler to impose assumptions about the
distribution of household incomes within these groups. This becomes partic-
ularly influential for the construction of entropy-based inequality measures
such as the mean logarithmic deviation or the Theil index.

For a given inequality measure J , the lower bound JL is calculated by
assuming perfect equality within all groups such that all individuals are as-
signed their group mean income. The upper bound JU is calculated by as-
signing a proportion of the individuals within a group the minimum income
of the group and the remainder the maximum income of the group15.

Figure A7: Sensitivity of inequality index effects to assumptions about
within-percentile inequality

Cowell (2011) describes multiple ‘compromise’ assumptions between the

15We omit the formula but within-group inequality is not generally maximized by an equal
split between the two
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two extremes, finding that they each approximate an average where the lower
bound is given twice the weight of the upper bound. Figure A7 depicts IRFs
of the two inequality measures under each of these three assumptions.

A2.4 Data processing

Algorithm A1: One-step state-dependent cumulative multiplier
for h = 0 to H do

Estimate the IRFRτ→τ (h) as defined in (3), collecting
state-dependent shock coefficients α̂1,h, α̂2,h;

Define ∆c
hyi,t+h :=

∑h
j=0 ∆jyi,t+j ;

Define τ̂ ci,t+h := τ̂it

[∑h
j=0 α̂1,j + α̂2,jT it

]
;

Estimate local projection:
∆c

hyi,t+h = m1,hτ̂
c
i,t+h+m2,hτ̂

c
i,t+hT it+λhT it+Zitγh+µi+ ηt+ εi,t+h;

end
Output: Multiplier coefficients m̂1,h, m̂2,h, λ̂h for h ∈ {0, ...H}

Algorithm A2: Constructing temperature counterfactuals holding
anthropogenic forcings fixed at 1980 levels

Input: {T hist
m,i,t},{T nat

m,i,t},{Tit}
for t∗ ∈ {1980, 2014} do
T hist

m,i,t∗ ← 1
30

∑30
j=1 T hist

m,i,t∗−j ;

T nat

m,i,t∗ ← 1
30

∑30
j=1 T nat

m,i,t∗−j ;

δm,i,t∗ ← T
hist

m,i,t∗ − T
nat

m,i,t∗ ;
end
for t = 1980 to 2014 do

δm,i,t ← (t− t0)
δm,i,2014−δm,i,1980

2014−1980
;

T̃ nat
m,i,t ← Tit − δm,i,t;

end
Construct states {T nat

m,i,t} by applying (1a) to {T̃ nat
m,i,t} then subtracting

by T̃ nat
m,i,1980;

Construct shocks {τ̂natm,i,t} by applying (1a) and (1b) to {T nat
m,i,t};

Output: {T̃ nat
m,i,t},{T

nat

m,i,t},{τ̂natm,i,t}
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Algorithm A3: Constructing economic counterfactuals holding an-
thropogenic forcings fixed at 1980 levels

Input: {T̃ nat
m,i,t},{T

nat

m,i,t},{τ̂natm,i,t}, B bootstrap samples indexed b

Initializing series:
for b = 1 to B do

Specify desired simulation interval: (t0, t1)← (1980, 2014);
EstimateRc

τ→Y (h;T , b) from (4);
Specify maximum projection horizon H using persistence test
from Section 2.2;

Define IRFsRτ→Y (h;T , b) := Rc
τ→Y (h;T , b)−Rc

τ→Y (h− 1;T , b);
Collect IRF coefficients;
{β̂1,h,b, β̂2,h,b, λ̂h,b}Hh=0;
Define δτm,b,i,t := τ̂natm,i,t − τ̂it;
Define δτTm,b,i,t := τ̂natm,i,t · T

nat − τ̂it · T it;
Define δTm,b,i,t := T

nat

m,i,t − T it;
Initialize δYm,b,i,t ← 0;
Initialize Ỹ nat

m,b,i,t0
:= Yi,t0

end
Iteratively constructing series:

for t = t0 + 1 to t1 do
for b = 1 to B do

for h = 0 to H do
δYm,b,i,t+h ← δYm,b,i,t+h+β̂1,h,b·δτm,b,i,t+β̂2,h,b·δτTm,b,i,t+λ̂h,b·δTm,b,i,t;

end

Ỹ nat
m,b,i,t ←

(
1 + log( Yit

Yi,t−1
) + δYm,b,i,t

)
Ỹ nat
m,b,i,t−1

end
end

Output: Ñnat
m,b,i,t

A3. Supplementary results
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Figure A8: Temperature multipliers estimated using survey microdata

(a) Persistent impacts on income

(b) Persistent impacts on consumption
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Figure A9: Population-weighted average temperatures by global percentile
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