Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities

Jose H. Blanchet, Virag Shah, Linjia Wu Management Science and Engineering Department Stanford University

Martin I. Reiman

Industrial Engineering and Operations Research Department Columbia University

Lawrence M. Wein

Graduate School of Business Stanford University

Introduction

- Taxonomy
 - Static vs. Dynamic
 - Centralized vs. Decentralized
 - Binary utilities vs. General utilities

Introduction

- Taxonomy
 - Static vs. Dynamic
 - Centralized vs. Decentralized
 - Binary utilities vs. General utilities
- Most dynamic MM models (except, e.g., Unver 2010 and Hu & Zhou 2016) assume dichotomous match outcomes

Introduction

Taxonomy

- Static vs. Dynamic
- Centralized vs. Decentralized
- Binary utilities vs. General utilities
- Most dynamic MM models (except Unver 2010 and Hu & Zhou 2016) assume dichotomous match outcomes

• Closest related work:

- Hu & Zhou (2016): Structural results for multiclass model
- Liu, Gong & Kulkarni (2015), Busic & Meyn (2016) and Buke & Chen (2017): fluid and diffusion limits for simpler problems
- Mertikopoulos et al. (2020): use $\pi^2/6$ result (Mezard-Parisi-Aldous) to study batch-and-match policies to minimize exponential mismatch plus waiting costs

Symmetric Model

- \bullet Buyers and sellers each arrive according to independent Poisson processes with rate λ
- Each buyer and seller independently abandons the market after an exponential amount of time with rate η

Symmetric Model

- \bullet Buyers and Sellers each arrive according to independent Poisson processes with rate λ
- Each buyer and seller independently abandons the market after an exponential amount of time with rate η
- Utility of a match between any buyer and any seller is $V \sim F(v)$
- The goal is to maximize the long run average expected utility

Symmetric Model

- \bullet Buyers and Sellers each arrive according to independent Poisson processes with rate λ
- Each buyer and seller independently abandons the market after an exponential amount of time with rate η
- Utility of a match between any buyer and any seller is $V \sim F(v)$
- The goal is to maximize the long run average expected utility
- The key tradeoff: make a match now or wait for a better match later?

A Restricted Class of Policies

- Buyer arrives at time t to find S(t) sellers, and system manager observes $V_1, \ldots, V_{S(t)}$
- Seller arrives at time t to find B(t) buyers, and system manager observes $V_1, \ldots, V_{B(t)}$

A Restricted Class of Policies

- Buyer arrives at time t to find S(t) sellers, and system manager observes $V_1, \ldots, V_{S(t)}$
- Seller arrives at time t to find B(t) buyers, and system manager observes V₁,..., V_{B(t)}
- Matches can be made only at an arrival epoch, and must involve the arriving agent

Large-Market Scaling

Even under a simple control policy, this model gives rise to a two-dimensional continuous time Markov chain (CTMC), (B(t), S(t)), which is difficult to deal with

So we consider asymptotics

Large-Market Scaling

Even under a simple control policy, this model gives rise to a two-dimensional continuous time Markov chain (CTMC), (B(t), S(t)), which is difficult to deal with

So we consider asymptotics

- In n^{th} system (as $n \to \infty$)
 - Arrival rates = $n\lambda$
 - Abandonment rates = η (unscaled)
 - Matching values = V (unscaled)
 - CTMC state = $(B_n(t), S_n(t))$
 - O(n) agents in system if no matches

Extreme Value Theory

•
$$M_n = \max\{V_1, \ldots, V_n\}$$

• For Types j = I, II, III

$$P\left(\frac{M_n-b_n}{a_n}\leqslant x
ight)
ightarrow G_j(x) \ \text{as} \ n
ightarrow\infty,$$

Extreme Value Theory

•
$$M_n = \max\{V_1, \ldots, V_n\}$$

• For Types j = I, II, III

$$P\left(\frac{M_n-b_n}{a_n}\leqslant x\right)\to G_j(x) \text{ as } n\to\infty,$$

- Type I = Gumbel (e.g., exponential, normal, gamma, lognormal)
- Type II = Frechet (e.g., Pareto)
- Type III = Reverse Weibull (e.g., uniform, beta)
- Interested primarily in $E[M_n] \sim a_n \mu_j + b_n$ for j = I, II, III

• If buyer arrives and finds $S_n(t) > z_n$ sellers, then he matches to seller with highest matching utility

- If buyer arrives and finds $S_n(t) > z_n$ sellers, then he matches to seller with highest matching utility
- If buyer arrives and finds $S_n(t) \leq z_n$ sellers, then he waits in market

- If buyer arrives and finds $S_n(t) > z_n$ sellers, then he matches to seller with highest matching utility
- If buyer arrives and finds $S_n(t) \leq z_n$ sellers, then he waits in market
- Greedy policy corresponds to $z_n = 0$

- If buyer arrives and finds $S_n(t) > z_n$ sellers, then he matches to seller with highest matching utility
- If buyer arrives and finds $S_n(t) \leq z_n$ sellers, then he waits in market
- Greedy policy corresponds to $z_n = 0$
- Similar match/wait decision when seller arrives to find $B_n(t)$ buyers

The Utility Rate U_n

- $U_n = arrival rate \times P(agent is matched) \times E[utility per match]$
- Arrival rate = $n\lambda$
- P(agent is matched) is derived from queueing asymptotics
- E[utility per match] is derived from extreme value theory

The Utility Rate U_n

- $U_n = \text{arrival rate} \times P(\text{agent is matched}) \times E[\text{utility per match}]$
- Arrival rate = $n\lambda$
- P(agent is matched) is derived from queueing asymptotics
- E[utility per match] is derived from extreme value theory
- Key Lemma: $E[M_{B_n}] = E[M_{E[B_n]}]$ in fluid limit
- Upper bound
 - P(agent is matched) = 1
 - E[utility/match]: assume no matching in $(B_n(t), S_n(t)) \Rightarrow$ arriving buyers see Poi $(\frac{n\lambda}{n})$ sellers, and matches to best one

•
$$U_n^u \sim n\lambda E[M_{\frac{n\lambda}{\eta}}]$$

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper	Greedy	Threshold
Distribution	Bound	Policy	Policy
exponential			
(ν)	$U_n^u \sim \frac{\lambda}{\nu} n \ln n$		

• $U_n^u \sim n\lambda E[M_{\frac{n\lambda}{\eta}}]$

•
$$E[M_n] \sim \frac{\gamma + \ln n}{\nu}$$
 where $\gamma = 0.5772$

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper	Greedy	Threshold
Distribution	Bound	Policy	Policy
exponential (ν)	$U_n^u \sim \frac{\lambda}{\nu} n \ln n$	$U_n^g \sim rac{\lambda}{2 u} n \ln n$	

- Steady-state distribution of $\frac{B_n(t)-S_n(t)}{\sqrt{n}} \to N\left(0, \frac{\lambda}{\eta}\right)$ (Liu et al. 2015)
- $Pr(abandon) = \frac{abandonment rate}{arrival rate} = \frac{O(\sqrt{n})}{O(n)} \rightarrow 0$
- $U_n^g \sim n\lambda E[M_{\frac{\lambda}{\eta}\sqrt{\frac{2}{\pi}}\sqrt{n}}]$

Matching	Utility Rate:	Utility Rate:	Utility Rate:	
Utility	Upper	Greedy	Threshold	
Distribution	Bound	Policy	Policy	
$ \begin{array}{c} \text{exponential} \\ (\nu) \end{array} $	$U_n^u \sim \frac{\lambda}{\nu} n \ln n$	$U_n^g \sim rac{\lambda}{2 u} n \ln n$	$z_n^* = \frac{n}{\ln n}$ is asymptotically optimal	

Matching	Utility Rate:	Utility Rate:	Utility Rate:	
Utility	Upper	Upper Greedy		
Distribution	Bound	Policy	Policy	
exponential (ν)	$U_n^u \sim \frac{\lambda}{\nu} n \ln n$	$U_n^g \sim rac{\lambda}{2 u} n \ln n$	$z_n^* = \frac{n}{\ln n}$ is asymptotically optimal	

More general framework: $E[M_t]$ is regularly varying at ∞ with index $\alpha \in [0, 1)$; i.e., $\lim_{t\to\infty} \frac{m(tx)}{m(t)} = x^{\alpha}$

Theorem: Assume that $\alpha = 0$ and let I(n) > 0 be any slowly varying function at ∞ such that $I(n) \nearrow \infty$ as $n \to \infty$. Then a threshold policy with $z_n = \frac{n}{I(n)}$ is asymptotically optimal.

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper	Greedy	Threshold
Distribution	Bound	Policy	Policy
Pareto			
shape $eta > 1$	$U_n^u = O(n^{1+\frac{1}{\beta}})$	$U_n^g = O(n^{1+\frac{1}{2\beta}})$	

- Matching Utilities are Pareto(1,2), $F(v) = 1 v^{-2}, v \ge 1$ ($\beta = 2$)
- $E[M_n] \sim \sqrt{n\pi}$
- $U_n^u \sim \frac{\sqrt{\pi}\lambda^{3/2}}{\sqrt{\eta}} n^{3/2}$ upper bound
- $U_n^g \sim (2\pi)^{1/4} \frac{\lambda^{3/2}}{\sqrt{\eta}} n^{5/4}$ greedy policy

• Threshold policy is much better than greedy policy $(n^{5/4} \text{ vs. } n^{3/2})$

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	ility Upper Greedy		Threshold
Distribution	Bound	Policy	Policy
Pareto			$z_n^* = rac{\lambda}{\eta(1+eta)} n$
shape $eta > 1$	$U_n^u = O(n^{1+\frac{1}{\beta}})$	$U_n^g = O(n^{1+\frac{1}{2\beta}})$	$U_n^t(z_n^*) = O(n^{1+\frac{1}{\beta}})$
			does not converge
			to upper bound

- Matching Utilities are Pareto(1,2), $F(v) = 1 v^{-2}, v \ge 1$ ($\beta = 2$)
- $E[M_n] \sim \sqrt{n\pi}$

max_z U^t_n(nz) = max_z nλ(1 - ^{zη}/_λ)√nzπ threshold policy ⇒ z* = ^λ/_{3η} simple optimal threshold
U^t_n(^{λn}/_{3η}) ~ ^{2√π}/_{3√3} ^{λ^{3/2}}/_{√η} n^{3/2} threshold policy
Upper bound is loose (by factor ²/_{3√3} = 0.385)

25 / 55

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper	Greedy	Threshold
Distribution	Bound	Policy	Policy
Pareto			$z_n^* = rac{\lambda}{\eta(1+eta)} n$
shape $eta > 1$	$U_n^u = O(n^{1+\frac{1}{\beta}})$	$U_n^g = O(n^{1+\frac{1}{2\beta}})$	$U_n^t(z_n^*) = O(n^{1+\frac{1}{\beta}})$
			does not converge
			to upper bound

More general framework: $E[M_t]$ is regularly varying at ∞ with index $\alpha \in [0, 1)$; i.e., $\lim_{t\to\infty} \frac{m(tx)}{m(t)} = x^{\alpha}$

Theorem: Assume that $\alpha \in (0, 1)$. Then a threshold policy of the form $z_n = z_* n$ with $z_* = \frac{\lambda \alpha}{\eta(1+\alpha)}$ is asymptotically optimal within the class of population-based threshold policies

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper Greedy		Threshold
Distribution	Bound Policy		Policy
		asymptotically	$z_n^* = 0$ is
uniform[<i>a</i> , <i>b</i>]	$U_n^u \sim \lambda bn$	optimal	asymptotically
			optimal

- Matching Utilities are U[0,1]
- $E[M_n] \sim 1 \frac{1}{n}$

•
$$U_n^u \sim n\lambda \left(1 - \frac{1}{\frac{\lambda}{\eta}n}\right)$$
 upper bound $\sim \lambda n$

•
$$U_n^g \sim n\lambda \left(1 - \frac{1}{\frac{\lambda}{\eta}\sqrt{\frac{2}{\pi}}\sqrt{n}}\right)$$
 greedy policy $\sim \lambda n$

Matching	Utility Rate:	Utility Rate:	Utility Rate:
Utility	Upper	Greedy	Threshold
Distribution	Bound	Policy	Policy
		asymptotically	$z_n^* = 0$ is
uniform[<i>a</i> , <i>b</i>]	$U_n^u \sim \lambda bn$	optimal	asymptotically
			optimal
exponential			$z_n^* = \frac{n}{\ln n}$ is
(<i>v</i>)	$U_n^u \sim \frac{\lambda}{\nu} n \ln n$	$U_n^g \sim \frac{\lambda}{2\nu} n \ln n$	asymptotically
			optimal
Pareto			$z_n^* = \frac{\lambda}{\eta(1+\beta)}n$
shape $\beta > 1$	$U_n^u = O(n^{1+\frac{1}{\beta}})$	$U_n^g = O(n^{1+\frac{1}{2\beta}})$	$U_n^t(z_n^*) = O(n^{1+\frac{1}{\beta}})$
			does not converge
			to upper bound

Simulation Results

	Optimal Threshold		Simula	ted Utility Ra	ate
Utility			Theoretical	Simulation	Greedy
Distribution	Theory	Simulation	Threshold	Threshold	Policy
exp(1)	144.8	148	4833	4833	3462

Simulation Results

	Optimal Threshold		Optimal Thresh		Simula	ted Utility Ra	ate
Utility			Theoretical	Simulation	Greedy		
Distribution	Theory	Simulation	Threshold	Threshold	Policy		
exp(1)	144.8	148	4833	4833	3462		
Pareto(1,2)	333.3	347	22,095	22,102	8259		

Simulation Results

	Optimal Threshold		Simulated Utility Rate		
Utility			Theoretical	Simulation	Greedy
Distribution	Theory	Simulation	Threshold	Threshold	Policy
exp(1)	144.8	148	4833	4833	3462
Pareto(1,2)	333.3	347	22,095	22,102	8259
U[0,1]	0	22	908.4	946.3	908.4

Fluid Model for Population-Based Threshold Policy

$$B_{n}(t) = B_{n}(0) + \int_{0}^{t} I_{\{S_{n}(r_{-}) < z_{n}\}} dN_{B}^{+}(\lambda nr) - N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right)$$
$$- \int_{0}^{t} I_{\{B_{n}(r_{-}) \ge z_{n}\}} dN_{S}^{+}(\lambda nr) ,$$
$$S_{n}(t) = S_{n}(0) + \int_{0}^{t} I_{\{B_{n}(r_{-}) < z_{n}\}} dN_{S}^{+}(\lambda nr) - N_{S}^{-}\left(\eta \int_{0}^{t} S_{n}(r) dr\right)$$
$$- \int_{0}^{t} I_{\{S_{n}(r_{-}) \ge z_{n}\}} dN_{B}^{+}(\lambda nr) .$$

Fluid Model for Population-Based Threshold Policy

$$B_{n}(t) = B_{n}(0) + \int_{0}^{t} I_{\{S_{n}(r_{-}) < z_{n}\}} dN_{B}^{+}(\lambda nr) - N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right)$$
$$- \int_{0}^{t} I_{\{B_{n}(r_{-}) \ge z_{n}\}} dN_{S}^{+}(\lambda nr),$$
$$S_{n}(t) = S_{n}(0) + \int_{0}^{t} I_{\{B_{n}(r_{-}) < z_{n}\}} dN_{S}^{+}(\lambda nr) - N_{S}^{-}\left(\eta \int_{0}^{t} S_{n}(r) dr\right)$$
$$- \int_{0}^{t} I_{\{S_{n}(r_{-}) \ge z_{n}\}} dN_{B}^{+}(\lambda nr).$$

Let $\bar{B}_n(t) = \frac{B_n(t)}{n}$ and $\bar{S}_n(t) = \frac{S_n(t)}{n}$ and let $n \to \infty$

Fluid Model for Population-Based Threshold Policy

$$\begin{split} B_{n}(t) &= B_{n}(0) + \int_{0}^{t} I_{\{S_{n}(r_{-}) < z_{n}\}} dN_{B}^{+}(\lambda nr) - N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right) \\ &- \int_{0}^{t} I_{\{B_{n}(r_{-}) \ge z_{n}\}} dN_{S}^{+}(\lambda nr) ,\\ S_{n}(t) &= S_{n}(0) + \int_{0}^{t} I_{\{B_{n}(r_{-}) < z_{n}\}} dN_{S}^{+}(\lambda nr) - N_{S}^{-}\left(\eta \int_{0}^{t} S_{n}(r) dr\right) \\ &- \int_{0}^{t} I_{\{S_{n}(r_{-}) \ge z_{n}\}} dN_{B}^{+}(\lambda nr) .\\ \text{Let } \bar{B}_{n}(t) &= \frac{B_{n}(t)}{n} \text{ and } \bar{S}_{n}(t) = \frac{S_{n}(t)}{n} \text{ and let } n \to \infty \\ \bar{B}(t) &= \bar{B}(0) + \lambda t - \eta \int_{0}^{t} \bar{B}(r) dr - \lambda \int_{0}^{t} I_{\{\bar{B}(r) \ge z\}} dr - \lambda \int_{0}^{t} I_{\{\bar{S}(r) \ge z\}} dr \\ \bar{S}(t) &= \bar{S}(0) + \lambda t - \eta \int_{0}^{t} \bar{S}(r) dr - \lambda \int_{0}^{t} I_{\{\bar{B}(r) \ge z\}} dr - \lambda \int_{0}^{t} I_{\{\bar{S}(r) \ge z\}} dr \\ \bar{S}_{34} \end{pmatrix} \end{split}$$

55

- If $\max\{V_1, \ldots, V_{\mathcal{S}_n(t)}\} > v_n$ then buyer matches upon arrival
- If $\max\{V_1, \ldots, V_{S_n(t)}\} \leq v_n$ then buyer waits in market

- If $\max\{V_1, \ldots, V_{\mathcal{S}_n(t)}\} > v_n$ then buyer matches upon arrival
- If $\max\{V_1, \ldots, V_{S_n(t)}\} \leq v_n$ then buyer waits in market
- Similar match/wait decision when seller arrives to find $B_n(t)$ buyers

•
$$\left(\frac{B_n(t)}{n}, \frac{S_n(t)}{n}\right)$$
 converges to fluid limit (Ethier and Kurtz 1986)

• Pair of ODEs describing fluid limit has a unique stationary point

•
$$\left(\frac{B_n(t)}{n}, \frac{S_n(t)}{n}\right)$$
 converges to fluid limit (Ethier and Kurtz 1986)

- Pair of ODEs describing fluid limit has a unique stationary point
- Theorem: Under some technical assumptions, a threshold of the form $v_n = v_* E[M_n]$ with $v_* > 0$ suitably chosen is asymptotically optimal within the class of utility-based threshold policies

•
$$\left(\frac{B_n(t)}{n}, \frac{S_n(t)}{n}\right)$$
 converges to fluid limit (Ethier and Kurtz 1986)

- Pair of ODEs describing fluid limit has a unique stationary point
- Theorem: Under some technical assumptions, a threshold of the form $v_n = v_* E[M_n]$ with $v_* > 0$ suitably chosen is asymptotically optimal within the class of utility-based threshold policies
- For Pareto distribution ($\beta > 1$), optimal threshold reduces to optimizing an expression involving the Lambert W function
- For Pareto(1,2) example (mean utility = 2), the optimal computed threshold is 42.8

Population-based Threshold vs. Utility-based Threshold

	Population-based Threshold			Utility-based Threshold		
Utility	Optimal	Utility	Fraction	Optimal	Utility	Fraction
Dist'n	Threshold	Rate	Abandon	Threshold	Rate	Abandon
exp(1)	148	4833	0.140	5.6	5732	0.150

Population-based Threshold vs. Utility-based Threshold

	Population-based Threshold			Utility-based Threshold		
Utility	Optimal	Utility	Fraction	Optimal	Utility	Fraction
Dist'n	Threshold	Rate	Abandon	Threshold	Rate	Abandon
exp(1)	148	4833	0.140	5.6	5732	0.150
Pareto						
(1,2)	347	22,102	0.334	42.0	43,750	0.503

Population-based Threshold vs. Utility-based Threshold

	Population-based Threshold			Utility-based Threshold		
Utility	Optimal	Utility	Fraction	Optimal	Utility	Fraction
Dist'n	Threshold	Rate	Abandon	Threshold	Rate	Abandon
exp(1)	148	4833	0.140	5.6	5732	0.150
Pareto						
(1,2)	347	22,102	0.334	42.0	43,750	0.503
U[0,1]	22	946	0.027	0.96	963	0.021

Scenario:
$$\lambda = \eta = 1$$
, $n = 1000$

$$B_{n}(t) = B_{n}(0) + \sum_{j=1}^{N_{B}^{+}(n\lambda t)} I_{\{\max_{i=1}^{S_{n}(A_{j-}^{B})} V_{i,j}^{B} \leq v\}} - \sum_{j=1}^{N_{S}^{+}(n\lambda t)} I_{\{\max_{i=1}^{B_{n}(A_{j-}^{S})} V_{i,j}^{S} > v\}} - N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r_{-}) dr\right)$$

$$B_{n}(t) = B_{n}(0) + \sum_{j=1}^{N_{B}^{+}(n\lambda t)} I_{\{\max_{i=1}^{S_{n}(A_{j-}^{B})} V_{i,j}^{B} \leq v\}} - \sum_{j=1}^{N_{S}^{+}(n\lambda t)} I_{\{\max_{i=1}^{B_{n}(A_{j-}^{S})} V_{i,j}^{S} > v\}} - N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r_{-}) dr\right)$$

Let $\bar{B}_n(t) = \frac{B_n(t)}{n}$

$$\bar{B}_{n}(t) = \bar{B}_{n}(0) + \frac{N_{B}^{+}\left(\lambda n \int_{0}^{t} F_{S_{n}(r)}(v_{n}) dr\right)}{n} - \frac{N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right)}{n} - \frac{\tilde{N}_{S}^{+}\left(\lambda n \int_{0}^{t} \left(1 - F_{B_{n}(r)}(v_{n})\right) dr\right)}{n}$$

$$\bar{B}_{n}(t) = \bar{B}_{n}(0) + \frac{N_{B}^{+}\left(\lambda n \int_{0}^{t} F_{S_{n}(r)}(v_{n}) dr\right)}{n} - \frac{N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right)}{n} - \frac{\tilde{N}_{S}^{+}\left(\lambda n \int_{0}^{t} \left(1 - F_{B_{n}(r)}(v_{n})\right) dr\right)}{n}$$

Let $n \rightarrow \infty$. Under Assumption 3,

$$\bar{B}(t) = \bar{B}(0) + \lambda \int_0^t e^{-\kappa \bar{S}(r)/v^{1/\alpha}} - \eta \int_0^t \bar{B}(r) dr - \lambda \int_0^t \left(1 - e^{-\kappa \bar{B}(r)/v^{1/\alpha}}\right) dr,$$

$$\bar{B}_{n}(t) = \bar{B}_{n}(0) + \frac{N_{B}^{+}\left(\lambda n \int_{0}^{t} F_{S_{n}(r)}(v_{n}) dr\right)}{n} - \frac{N_{B}^{-}\left(\eta \int_{0}^{t} B_{n}(r) dr\right)}{n} - \frac{\tilde{N}_{S}^{+}\left(\lambda n \int_{0}^{t} \left(1 - F_{B_{n}(r)}(v_{n})\right) dr\right)}{n}$$

Let $n \to \infty$. Under Assumption 3,

$$\bar{B}(t) = \bar{B}(0) + \lambda \int_0^t e^{-\kappa \bar{S}(r)/v^{1/\alpha}} - \eta \int_0^t \bar{B}(r) dr - \lambda \int_0^t \left(1 - e^{-\kappa \bar{B}(r)/v^{1/\alpha}}\right) dr,$$

Solve $0 = \lambda e^{-\kappa \bar{z}/v^{1/\alpha}} - \eta \bar{z} - \lambda (1 - e^{-\kappa \bar{z}/v^{1/\alpha}})$

Correlated Utilities

- Under population-threshold policy, the optimal threshold is independent of correlation ρ and the utility rate is decreasing in ρ
- Under utility-threshold policy, the optimal threshold is decreasing in ρ and the utility rate is decreasing in ρ

Unbalanced Markets

- $\lambda_B \neq \lambda_S$ and $\eta_B \neq \eta_S$ with heavy tails
- Buyers and sellers have the same utility-based threshold
- Market thickness (i.e., threshold value) increases with amount of imbalance

• Can we do better if we drop the requirement that matches must be made at arrival epochs (and involve an arriving item)?

- Consider a policy that:
 - Collects all arrivals over a time interval of length Δ
 - Chooses at random $\min\{B(t), S(t)\}$ agents from thicker side of market
 - Maximizes utility from these matches

- Consider a policy that:
 - Collects all arrivals over a time interval of length Δ
 - Chooses at random min $\{B(t), S(t)\}$ agents from thicker side of market
 - Maximizes utility from these matches
- *Theorem:* Under a Pareto (c, β) distribution with finite mean, the utility rate $U_n^b(\Delta)$ satisfies

$$\lim_{n \to \infty} \frac{U_n^b(\Delta)}{n^{\alpha+1}} \leqslant f(\boldsymbol{c}, \alpha, \lambda, \eta, \Delta^*)$$

where the optimal time window Δ^* is the unique solution to

$$e^{\eta\Delta} = (1+\alpha)\eta\Delta + 1$$

- Consider a policy that:
 - Collects all arrivals over a time interval of length Δ
 - Chooses at random min $\{B(t), S(t)\}$ agents from thicker side of market
 - Maximizes utility from these matches

• Let
$$\lambda = \eta = 1$$
, $n = 1000$, $c = 1, \beta = 2$:

- Upper bound for batch utility is less than utility from utility threshold policy
- In simulations, batch utility = 25k (vs 44k for utility threshold policy)
- Average batch size = 532 matches

Summary

- We incorporated general utilities into centralized dynamic matching markets by using
 - Queueing asymptotics
 - Extreme value theory

Summary

- We incorporated general utilities into centralized dynamic matching markets by using
 - Queueing asymptotics
 - Extreme value theory
- As right tail of matching utility distribution gets heavier:
 - Optimal market thickness increases
 - Abandonment increases
 - Optimal utility rate increases

Summary

- We incorporated general utilities into centralized dynamic matching markets by using
 - Queueing asymptotics
 - Extreme value theory
- As right tail of matching utility distribution gets heavier:
 - Optimal market thickness increases
 - Abandonment increases
 - Optimal utility rate increases
- Empirical work (Hitsch et al. 2010, Boyd et al. 2013, Agrawal 2015) suggests that large centralized matching markets are likely to benefit from allowing the market to thicken