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Introduction
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§ Static vs. Dynamic
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§ Binary utilities vs. General utilities
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Introduction

Taxonomy

§ Static vs. Dynamic

§ Centralized vs. Decentralized

§ Binary utilities vs. General utilities

Most dynamic MM models (except Unver 2010 and Hu & Zhou 2016)
assume dichotomous match outcomes

Closest related work:

§ Hu & Zhou (2016): Structural results for multiclass model
§ Liu, Gong & Kulkarni (2015), Busic & Meyn (2016) and Buke & Chen

(2017): fluid and diffusion limits for simpler problems
§ Mertikopoulos et al. (2020): use π2{6 result (Mezard-Parisi-Aldous) to

study batch-and-match policies to minimize exponential mismatch plus
waiting costs

4 / 55



Symmetric Model

Buyers and sellers each arrive according to independent Poisson
processes with rate λ

Each buyer and seller independently abandons the market after an
exponential amount of time with rate η
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Symmetric Model

Buyers and Sellers each arrive according to independent Poisson
processes with rate λ

Each buyer and seller independently abandons the market after an
exponential amount of time with rate η

Utility of a match between any buyer and any seller is V „ F pvq

The goal is to maximize the long run average expected utility

The key tradeoff: make a match now or wait for a better match later?

7 / 55



A Restricted Class of Policies

Buyer arrives at time t to find Sptq sellers, and system manager
observes V1, . . . ,VSptq

Seller arrives at time t to find Bptq buyers, and system manager
observes V1, . . . ,VBptq
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A Restricted Class of Policies

Buyer arrives at time t to find Sptq sellers, and system manager
observes V1, . . . ,VSptq

Seller arrives at time t to find Bptq buyers, and system manager
observes V1, . . . ,VBptq

Matches can be made only at an arrival epoch, and must involve the
arriving agent
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Large-Market Scaling

Even under a simple control policy, this model gives rise to a
two-dimensional continuous time Markov chain (CTMC), pBptq,Sptqq,
which is difficult to deal with

So we consider asymptotics
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Large-Market Scaling

Even under a simple control policy, this model gives rise to a
two-dimensional continuous time Markov chain (CTMC), pBptq,Sptqq,
which is difficult to deal with

So we consider asymptotics

In nth system (as nÑ8)

Arrival rates = nλ

Abandonment rates = η (unscaled)

Matching values = V (unscaled)

CTMC state = pBnptq,Snptqq

Opnq agents in system if no matches
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Extreme Value Theory

Mn “ maxtV1, . . . ,Vnu

For Types j = I, II, III

P

ˆ

Mn ´ bn
an

ď x

˙

Ñ Gjpxq as nÑ8,
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Extreme Value Theory

Mn “ maxtV1, . . . ,Vnu

For Types j = I, II, III

P

ˆ

Mn ´ bn
an

ď x

˙

Ñ Gjpxq as nÑ8,

Type I = Gumbel (e.g., exponential, normal, gamma, lognormal)

Type II = Frechet (e.g., Pareto)

Type III = Reverse Weibull (e.g., uniform, beta)

Interested primarily in E rMns „ anµj ` bn for j = I, II, III
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Population-based Threshold Policy With Threshold zn

If buyer arrives and finds Snptq ą zn sellers, then he matches to seller
with highest matching utility
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Population-based Threshold Policy With Threshold zn

If buyer arrives and finds Snptq ą zn sellers, then he matches to seller
with highest matching utility

If buyer arrives and finds Snptq ď zn sellers, then he waits in market

Greedy policy corresponds to zn “ 0

Similar match/wait decision when seller arrives to find Bnptq buyers

17 / 55



The Utility Rate Un

Un = arrival rate ˆ P(agent is matched) ˆ E[utility per match]

Arrival rate = nλ

P(agent is matched) is derived from queueing asymptotics

E[utility per match] is derived from extreme value theory
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The Utility Rate Un

Un = arrival rate ˆ P(agent is matched) ˆ E[utility per match]

Arrival rate = nλ

P(agent is matched) is derived from queueing asymptotics

E[utility per match] is derived from extreme value theory

Key Lemma: E rMBns “ E rME rBnss in fluid limit

Upper bound

§ P(agent is matched) = 1

§ E[utility/match]: assume no matching in (Bnptq,Snptqq ñ
arriving buyers see Poi

`

nλ
η

˘

sellers, and matches to best one

§ Uu
n „ nλE rM nλ

η
s
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

exponential

pν) Uu
n „

λ
ν n ln n

Uu
n „ nλE rM nλ

η
s

E rMns „
γ`ln n

ν where γ “ 0.5772
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

exponential

pν) Uu
n „

λ
ν n ln n Ug

n „
λ
2ν n ln n

Steady-state distribution of Bnptq´Snptq?
n

Ñ N
´

0, λη

¯

(Liu et al. 2015)

Pr(abandon) = abandonment rate
arrival rate “

Op
?
nq

Opnq Ñ 0

Ug
n „ nλE rMλ

η

b

2
π

?
n
s

21 / 55



Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

exponential z˚n “
n

ln n is

pν) Uu
n „

λ
ν n ln n Ug

n „
λ
2ν n ln n asymptotically

optimal
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

exponential z˚n “
n

ln n is

pν) Uu
n „

λ
ν n ln n Ug

n „
λ
2ν n ln n asymptotically

optimal

More general framework: E rMts is regularly varying at 8 with index

α P r0, 1q; i.e., limtÑ8
mptxq
mptq “ xα

Theorem: Assume that α “ 0 and let lpnq ą 0 be any slowly varying
function at 8 such that lpnq Õ 8 as nÑ8. Then a threshold policy
with zn “

n
lpnq is asymptotically optimal.
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

Pareto

shape β ą 1 Uu
n “ Opn1` 1

β q Ug
n “ Opn1` 1

2β q

Matching Utilities are Pareto(1,2), F pvq “ 1´ v´2, v ě 1 (β “ 2)

E rMns „
?
nπ

Uu
n „

?
πλ3{2
?
η n3{2 upper bound

Ug
n „ p2πq1{4

λ3{2
?
η n

5{4 greedy policy

Threshold policy is much better than greedy policy (n5{4 vs. n3{2)
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

Pareto z˚n “
λ

ηp1`βqn

shape β ą 1 Uu
n “ Opn1` 1

β q Ug
n “ Opn1` 1

2β q Ut
npz

˚
n q “ Opn1` 1

β q

does not converge
to upper bound

Matching Utilities are Pareto(1,2), F pvq “ 1´ v´2, v ě 1 (β “ 2)

E rMns „
?
nπ

maxz Ut
npnzq “ maxz nλ

´

1´ zη
λ

¯?
nzπ threshold policy

ñ z˚ “ λ
3η simple optimal threshold

Ut
n

`

λn
3η

˘

„
2
?
π

3
?

3
λ3{2
?
η n

3{2 threshold policy

Upper bound is loose (by factor 2
3
?

3
“ 0.385) 25 / 55



Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

Pareto z˚n “
λ

ηp1`βqn

shape β ą 1 Uu
n “ Opn1` 1

β q Ug
n “ Opn1` 1

2β q Ut
npz

˚
n q “ Opn1` 1

β q

does not converge
to upper bound

More general framework: E rMts is regularly varying at 8 with index

α P r0, 1q; i.e., limtÑ8
mptxq
mptq “ xα

Theorem: Assume that α P p0, 1q. Then a threshold policy of the form
zn “ z˚n with z˚ “

λα
ηp1`αq is asymptotically optimal within the class of

population-based threshold policies
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

asymptotically z˚n “ 0 is
uniformra, bs Uu

n „ λbn optimal asymptotically
optimal

Matching Utilities are U[0,1]

E rMns „ 1´ 1
n

Uu
n „ nλ

´

1´ 1
λ
η
n

¯

upper bound

„ λn

Ug
n „ nλ

´

1´ 1
λ
η

b

2
π

?
n

¯

greedy policy

„ λn
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Summary of Results for Three Canonical Examples

Matching Utility Rate: Utility Rate: Utility Rate:
Utility Upper Greedy Threshold

Distribution Bound Policy Policy

asymptotically z˚n “ 0 is
uniformra, bs Uu

n „ λbn optimal asymptotically
optimal

exponential z˚n “
n

ln n is

pν) Uu
n „

λ
ν n ln n Ug

n „
λ
2ν n ln n asymptotically

optimal

Pareto z˚n “
λ

ηp1`βqn

shape β ą 1 Uu
n “ Opn1` 1

β q Ug
n “ Opn1` 1

2β q Ut
npz

˚
n q “ Opn1` 1

β q

does not converge
to upper bound
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Simulation Results

Optimal Threshold Simulated Utility Rate
Utility Theoretical Simulation Greedy

Distribution Theory Simulation Threshold Threshold Policy

exp(1) 144.8 148 4833 4833 3462

Scenario: λ “ η “ 1, n “ 1000
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Simulation Results

Optimal Threshold Simulated Utility Rate
Utility Theoretical Simulation Greedy

Distribution Theory Simulation Threshold Threshold Policy

exp(1) 144.8 148 4833 4833 3462

Pareto(1,2) 333.3 347 22,095 22,102 8259

Scenario: λ “ η “ 1, n “ 1000
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Simulation Results

Optimal Threshold Simulated Utility Rate
Utility Theoretical Simulation Greedy

Distribution Theory Simulation Threshold Threshold Policy

exp(1) 144.8 148 4833 4833 3462

Pareto(1,2) 333.3 347 22,095 22,102 8259

U[0,1] 0 22 908.4 946.3 908.4

Scenario: λ “ η “ 1, n “ 1000
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Fluid Model for Population-Based Threshold Policy

Bn ptq “ Bn p0q `

ż t

0
ItSnpr´qăznudN

`
B pλnrq ´ N´B

ˆ

η

ż t

0
Bn prq dr

˙

´

ż t

0
ItBnpr´qěznudN

`
S pλnrq ,

Sn ptq “ Sn p0q `

ż t

0
ItBnpr´qăznudN

`
S pλnrq ´ N´S

ˆ

η

ż t

0
Sn prq dr

˙

´

ż t

0
ItSnpr´qěznudN

`
B pλnrq .
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Fluid Model for Population-Based Threshold Policy

Bn ptq “ Bn p0q `

ż t

0
ItSnpr´qăznudN

`
B pλnrq ´ N´B

ˆ

η

ż t

0
Bn prq dr

˙

´

ż t

0
ItBnpr´qěznudN

`
S pλnrq ,

Sn ptq “ Sn p0q `

ż t

0
ItBnpr´qăznudN

`
S pλnrq ´ N´S

ˆ

η

ż t

0
Sn prq dr

˙

´

ż t

0
ItSnpr´qěznudN

`
B pλnrq .

Let B̄nptq “
Bnptq
n and S̄nptq “

Snptq
n and let nÑ8
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Fluid Model for Population-Based Threshold Policy

Bn ptq “ Bn p0q `

ż t

0
ItSnpr´qăznudN

`
B pλnrq ´ N´B

ˆ

η

ż t

0
Bn prq dr

˙

´

ż t

0
ItBnpr´qěznudN

`
S pλnrq ,

Sn ptq “ Sn p0q `

ż t

0
ItBnpr´qăznudN

`
S pλnrq ´ N´S

ˆ

η

ż t

0
Sn prq dr

˙

´

ż t

0
ItSnpr´qěznudN

`
B pλnrq .

Let B̄nptq “
Bnptq
n and S̄nptq “

Snptq
n and let nÑ8

B̄ ptq “ B̄ p0q ` λt ´ η

ż t

0
B̄ prq dr ´ λ

ż t

0
ItB̄prqězudr ´ λ

ż t

0
ItS̄prqězudr

S̄ ptq “ S̄ p0q ` λt ´ η

ż t

0
S̄ prq dr ´ λ

ż t

0
ItB̄prqězudr ´ λ

ż t

0
ItS̄prqězudr
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Utility-based Threshold Policy With Threshold vn

If maxtV1, . . . ,VSnptqu ą vn then buyer matches upon arrival

If maxtV1, . . . ,VSnptqu ď vn then buyer waits in market
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Utility-based Threshold Policy With Threshold vn

If maxtV1, . . . ,VSnptqu ą vn then buyer matches upon arrival

If maxtV1, . . . ,VSnptqu ď vn then buyer waits in market

Similar match/wait decision when seller arrives to find Bnptq buyers
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Utility-based Threshold Policy With Threshold vn

´

Bnptq
n , Snptqn

¯

converges to fluid limit (Ethier and Kurtz 1986)

Pair of ODEs describing fluid limit has a unique stationary point
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Utility-based Threshold Policy With Threshold vn

´

Bnptq
n , Snptqn

¯

converges to fluid limit (Ethier and Kurtz 1986)

Pair of ODEs describing fluid limit has a unique stationary point

Theorem: Under some technical assumptions, a threshold of the form
vn “ v˚E rMns with v˚ ą 0 suitably chosen is asymptotically optimal
within the class of utility-based threshold policies
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Utility-based Threshold Policy With Threshold vn

´

Bnptq
n , Snptqn

¯

converges to fluid limit (Ethier and Kurtz 1986)

Pair of ODEs describing fluid limit has a unique stationary point

Theorem: Under some technical assumptions, a threshold of the form
vn “ v˚E rMns with v˚ ą 0 suitably chosen is asymptotically optimal
within the class of utility-based threshold policies

For Pareto distribution (β ą 1), optimal threshold reduces to
optimizing an expression involving the Lambert W function

For Pareto(1,2) example (mean utility = 2), the optimal computed
threshold is 42.8
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Population-based Threshold vs. Utility-based Threshold

Population-based Threshold Utility-based Threshold
Utility Optimal Utility Fraction Optimal Utility Fraction
Dist’n Threshold Rate Abandon Threshold Rate Abandon

exp(1) 148 4833 0.140 5.6 5732 0.150

Scenario: λ “ η “ 1, n “ 1000
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Population-based Threshold vs. Utility-based Threshold

Population-based Threshold Utility-based Threshold
Utility Optimal Utility Fraction Optimal Utility Fraction
Dist’n Threshold Rate Abandon Threshold Rate Abandon

exp(1) 148 4833 0.140 5.6 5732 0.150

Pareto
(1,2) 347 22,102 0.334 42.0 43,750 0.503

Scenario: λ “ η “ 1, n “ 1000

41 / 55



Population-based Threshold vs. Utility-based Threshold

Population-based Threshold Utility-based Threshold
Utility Optimal Utility Fraction Optimal Utility Fraction
Dist’n Threshold Rate Abandon Threshold Rate Abandon

exp(1) 148 4833 0.140 5.6 5732 0.150

Pareto
(1,2) 347 22,102 0.334 42.0 43,750 0.503

U[0,1] 22 946 0.027 0.96 963 0.021

Scenario: λ “ η “ 1, n “ 1000
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Fluid Model for Utility-Based Threshold Policy

Bn ptq “ Bn p0q `

N`B pnλtq
ÿ

j“1

I
tmax

SnpABj´q
i“1 V B

i,jďvu

´

N`S pnλtq
ÿ

j“1

I
tmax

BnpA
S
j´
q

i“1 V S
i,jąvu

´ N´B

ˆ

η

ż t

0
Bn pr´q dr

˙
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Fluid Model for Utility-Based Threshold Policy

Bn ptq “ Bn p0q `

N`B pnλtq
ÿ

j“1

I
tmax

SnpABj´q
i“1 V B

i,jďvu

´

N`S pnλtq
ÿ

j“1

I
tmax

BnpA
S
j´
q

i“1 V S
i,jąvu

´ N´B

ˆ

η

ż t

0
Bn pr´q dr

˙

Let B̄nptq “
Bnptq
n

B̄n ptq “ B̄n p0q `
N`B

´

λn
şt

0 FSnprq pvnq dr
¯

n
´

N´B

´

η
şt

0 Bn prq dr
¯

n

´

Ñ`S

´

λn
şt

0

`

1´ FBnprq pvnq
˘

dr
¯

n
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Fluid Model for Utility-Based Threshold Policy

B̄n ptq “ B̄n p0q `
N`B

´

λn
şt

0 FSnprq pvnq dr
¯

n
´

N´B

´

η
şt

0 Bn prq dr
¯

n

´

Ñ`S

´

λn
şt

0

`

1´ FBnprq pvnq
˘

dr
¯

n

Let nÑ8. Under Assumption 3,

B̄ ptq “ B̄ p0q`λ

ż t

0
e´κS̄prq{v

1{α
´η

ż t

0
B̄ prq dr´λ

ż t

0

´

1´ e´κB̄prq{v
1{α

¯

dr ,
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Fluid Model for Utility-Based Threshold Policy

B̄n ptq “ B̄n p0q `
N`B

´

λn
şt

0 FSnprq pvnq dr
¯

n
´

N´B

´

η
şt

0 Bn prq dr
¯

n

´

Ñ`S

´

λn
şt

0

`

1´ FBnprq pvnq
˘

dr
¯

n

Let nÑ8. Under Assumption 3,

B̄ ptq “ B̄ p0q`λ

ż t

0
e´κS̄prq{v

1{α
´η

ż t

0
B̄ prq dr´λ

ż t

0

´

1´ e´κB̄prq{v
1{α

¯

dr ,

Solve 0 “ λe´κz̄{v
1{α
´ ηz̄ ´ λp1´ e´κz̄{v

1{α
q
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Correlated Utilities

Under population-threshold policy, the optimal threshold is
independent of correlation ρ and the utility rate is decreasing in ρ

Under utility-threshold policy, the optimal threshold is decreasing in ρ
and the utility rate is decreasing in ρ
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Unbalanced Markets

λB ‰ λS and ηB ‰ ηS with heavy tails

Buyers and sellers have the same utility-based threshold

Market thickness (i.e., threshold value) increases with amount of
imbalance
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Batch and Match

Can we do better if we drop the requirement that matches must be
made at arrival epochs (and involve an arriving item)?
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Batch and Match

Consider a policy that:

§ Collects all arrivals over a time interval of length ∆

§ Chooses at random mintBptq,Sptqu agents from thicker side of market

§ Maximizes utility from these matches
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Batch and Match

Consider a policy that:

§ Collects all arrivals over a time interval of length ∆

§ Chooses at random mintBptq,Sptqu agents from thicker side of market

§ Maximizes utility from these matches

Theorem: Under a Paretopc , βq distribution with finite mean, the
utility rate Ub

n p∆q satisfies

lim
nÑ8

Ub
n p∆q

nα`1
ď f pc , α, λ, η,∆˚q

where the optimal time window ∆˚ is the unique solution to

eη∆ “ p1` αqη∆` 1
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Batch and Match

Consider a policy that:

§ Collects all arrivals over a time interval of length ∆

§ Chooses at random mintBptq,Sptqu agents from thicker side of market

§ Maximizes utility from these matches

Let λ “ η “ 1, n “ 1000, c “ 1, β “ 2:

§ Upper bound for batch utility is less than utility from utility threshold
policy

§ In simulations, batch utility = 25k (vs 44k for utility threshold policy)

§ Average batch size = 532 matches
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Summary

We incorporated general utilities into centralized dynamic matching
markets by using

§ Queueing asymptotics

§ Extreme value theory
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As right tail of matching utility distribution gets heavier:

§ Optimal market thickness increases

§ Abandonment increases

§ Optimal utility rate increases
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Summary

We incorporated general utilities into centralized dynamic matching
markets by using

§ Queueing asymptotics

§ Extreme value theory

As right tail of matching utility distribution gets heavier:

§ Optimal market thickness increases

§ Abandonment increases

§ Optimal utility rate increases

Empirical work (Hitsch et al. 2010, Boyd et al. 2013, Agrawal 2015)
suggests that large centralized matching markets are likely to benefit
from allowing the market to thicken
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