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Intro

Research Question:
How fast should one match (clear the market)?

Main Trade-Off:

1. Matching faster reduces waiting time (often costly, i.e. time on dialysis)

2. Waiting “thickens” the market and might facilitate more and better matches.

→ If agents are heterogeneous some might benefit from waiting while other don’t.

→ In kidney exchanges matching fast might hurt hard-to-match agents.

→ Potentially relevant in many context: ride-sharing, kidneys, financial markets, ..

→ We look at this question in large kidney exchanges without match quality.
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Kidney Exchanges

• About 18000 transplant per year:

• 12000 from cadaver organs;

• 6000 from living donors;

• But 5000 are removed without a transplant (“too sick”) while 35000 joined the list.

• Live donation helps to overcome shortage:

• Direct donations: patient and compatible donor.

• Exchange: between incompatible patient-donor pairs (≈ 15% of US live donor transplants).

• Exchanges match at different speeds:

• US: gradually more frequenetly. Daily (NKR, APD, Methodist in SA), bi-weekly (UNOS)

• Europe (Netherlands, UK, Czech Republic), Canada, Australia: 3-4 months.

• Israel: daily.

• Concerns that high matching frequency in the US leads to inefficiency: “There has been a

race to the bottom in that registries forced by competition to perform match runs very

frequently...and likely fewer transplants are accomplished nationwide” (Gentry and Segev,

AJT 2015).
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Overview

• Analysis of the compatibility graph.

1. data: Identify empirical features of large compatibility graphs .

2. theory: Single type random graph models can not fit these features.

3. theory: Propose a simple two-type model.

• Analysis of dynamic matching policies.

1. Consider three policies: (1) Greedy matching (2) Batching (3) Patient matching.

2. Theoretical analysis:

• Greedy matching is (almost) optimal in large markets for all types and all linear EU preferences.

• Batching policies can only be optimal they match at high frequency.

• Patient is suboptimal in large markets.

3. Empirical analysis:

• Greedy does better than 7d, 14d, 30d batching for moderate market sizes both in simulations

of the model and with real compatibility data.

• Patient matches around 1% more, but leads to 35% longer waiting time.

• Interestingly, patient matching is bad for hard-to-match agents.
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Compatibility Graphs

• An agent is a pair of a kidney donor and a patient.

• Two agents are compatibly if they can exchange kidneys.

• Compatibility graph G : agent ≡ node, edge ≡ compatibility.

• Matching µ ∈ M(G ): pairwise assignment of compatible agents.

• Size of the maximum matching:

SMM = max
µ∈M(G)

|µ|
|G |

.

• Fraction of agents without a partner:

FWP =
|{i ∈ G : (i , j) /∈ M(G ) for all j}|

|G |
.

• Capture the benefit of enlarging the market exogenously or by waiting.
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Figure 1: Average percentage of pairs without a compatible partner (dashed) and the percentage matched in a

maximum matching (solid). The average for every fixed pool size on the horizontal axis is computed by random

sampling from the combined data set from NKR, APD, UNOS and Methodist at San Antonio.
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Empirical Regularities

Two empirical regularities:

1. Size of the maximum matching is bounded away from 1.

2. Fraction of agents without a partner goes to 0.

Proposition

Consider a model with m homogeneous agents, in which every pair of agents are compatible

independently with probability p(m) > 0 that may depend on the market size. The following

two conditions cannot be satisfied simultaneously

lim
m→∞

E [SMM] < 1, and (1)

lim
m→∞

E [FWP] = 0 . (2)

→ Intuitively, heterogeneity plays a major role.
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A simple two-type model

Easy to Match Hard to Match
p

q

Figure 2: The random compatibility model.

• Two types easy (E) and hard-to-match (H).

• Compatibility is independent across pairs

1. p > 0 between (E) and (H);

2. q > 0 between (E) and (E);

3. 0 between (H) and (H);

8



A simple two-type model

Easy to Match Hard to Match
p

q

Figure 2: The random compatibility model.

• Two types easy (E) and hard-to-match (H).

• Compatibility is independent across pairs

1. p > 0 between (E) and (H);

2. q > 0 between (E) and (E);

3. 0 between (H) and (H);

8



Relating this model to data

Proposition

Consider the compatibility model with m easy-to-match agents and (1 + λ)m hard-to-match

agents where λ > 0. Then, with high probability1 we have that

SMM =
2

2 + λ
, (3)

FWP = 0 . (4)

• There are λm more H agents which go unmatched ⇒ SMM ≤ 2
2+λ .

• Perfect matching in bipartite with high prob. ⇒ SMM = 2
2+λ with high prob.

• In the data limm→∞ SMM = 0.6 suggesting λ ≈ 1.3, i.e. 70% hard-to-match.

1A sequence of events E1,E2, . . . holds with high probability if there is α > 0 such that

limn→∞ nα(1 − P[En]) = 0.
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Dynamic Matching



Dynamic Matching

• Agents arrive according to Poisson process.

1. H agents arrive at rate m(1 + λ).

2. E agents arrive at rate m.

• Agents become critical at an exponentially distributed time with mean d .

1. Criticality is observable.

2. Last time an agent can match.

• A dynamic policy chooses at each point in time a matching µt ∈ M(Gt) to execute.

1. Greedy: execute every possible matching immediately.

2. Batching: every T units of time execute a maximal matching.

3. Patient: whenever an agent gets critical attempt to match that agent.

Throughout break ties randomly in favor of H agents.
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Why can waiting be beneficial?

Time 1:

A1 A2

Time 2:

A3 A1 A2 A4

• The policy which matches at time 1 matches 2 agents.

• The policy which matches at time 2 matches 4 agents.
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Measure for performance

• θi ∈ {E ,H} agent i ’s type

• αi ≥ 0 her arrival time

• ϕi ≥ 0 how long she is present in the market

• µi ∈ {0, 1} whether she is matched.

• Match rate

qΘ(m) = lim
t→∞

E
[
|{i : µi = 1 and αi ≤ t and θi = Θ}|

|{i : αi ≤ t and θi = Θ}|

]
.

• Waiting time

wΘ(m) = lim
t→∞

E
[ ∑

i : αi≤t and θi=Θ ϕi

|{i : αi ≤ t and θi = Θ}|

]
.

• Motivation: payoff of a risk-neutral expected-utility-maximizer with constant waiting cost.

12



Measure for performance

• θi ∈ {E ,H} agent i ’s type

• αi ≥ 0 her arrival time

• ϕi ≥ 0 how long she is present in the market

• µi ∈ {0, 1} whether she is matched.

• Match rate

qΘ(m) = lim
t→∞

E
[
|{i : µi = 1 and αi ≤ t and θi = Θ}|

|{i : αi ≤ t and θi = Θ}|

]
.

• Waiting time

wΘ(m) = lim
t→∞

E
[ ∑

i : αi≤t and θi=Θ ϕi

|{i : αi ≤ t and θi = Θ}|

]
.

• Motivation: payoff of a risk-neutral expected-utility-maximizer with constant waiting cost.

12



Asymptotic Optimality

Definition (Asymptotic optimality)
A policy is asymptotically optimal if for every ε > 0 there exists mε such that, when m ≥ mε,

no type of agent can improve its match rate qΘ(m) or expected waiting time wΘ(m) by more

than ε when changing to any other policy.

• Demanding as the policy needs to be optimal

1. for all types.

2. for all risk-neutral preferences with linear waiting cost.

• Existence of such a policy is unclear.

• If such a policy exists it there is no conflict between different types in a large market.
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Results

Theorem

The greedy policy is asymptotically optimal, whereas the batching policy (for any fixed batch

length) and the patient policy are not asymptotically optimal.

• Greedy is (almost) optimal for H and E agents in sufficiently large markets.

• Patient and Batching with fixed batch length are suboptimal in sufficiently large markets.
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Proposition: As the arrival rate m grows large match rate and waiting time converge to:

Matchrate q Waiting time w

H E H E

Greedy 1
1+λ 1 λ d

1+λ 0

Batching 1−e−T/d

(1+λ)T/d
1−e−T/d

T/d d(1− qH) d(1− qE )

Patient 1
1+λ 1 d 0

- d expected criticality time

- λ imbalance parameter

- T batching time

• Batching:

1. For T → 0 Batching converges to Greedy (for a fixed market size).

2. For T > 0 matches both fewer (H,E) agents and matches the slower.

• Patient:

1. Achieves the optimal match rates.

2. Induces longer waiting times for H agents, but not for E .
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Figure 3: Illustration when λ = 1.33 and d equals 360 days. The blue points represent the predictions

of our model for large markets which we derived.
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Proof Intuition

• Match rates of ( 1
1+λ , 1) are achieved by matching all E agents to H agents and thus

constitute an upper bound.

• Clearly, a waiting time of 0 is a bound for the E waiting time.

• The upper bound on the waiting time for H agent is obtained by analyzing the process

where all H and E agents are compatible.

• Intuitively, H agents must accumulate in any mechanism as they can only match to E

agents and there are fewer E agents.

• As H agents accumulate E agents can always always find a partner immediately.

• Under Greedy this achieves the upper bound in a large market.

• Under Batching the match rate is lower as some agents leave between matching intervals.

• Under Patient H agents get only matched when they get critical and thus wait a long time.

• Proofs: Detailed analysis of the 2-dimensional Markov chain for each process.
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How large do is large?



Greedy and Batching in Finite Markets

Proposition: A market size dependent batching policy with batch length Tm is asymptotically

optimal if and only if the batch length goes to zero as the market becomes large

limm→∞ Tm = 0.

For how large batching time is batching suboptimal at a fixed market size?

Proposition: Let m > 0 be an arbitrary fixed arrival rate. Define z∗ to be the steady-state

probability that an E agent, upon her arrival, is matched to an H agent under the greedy

policy. Then, for every E and H agents the match rate and waiting time of that type under the

batching policy are worse than under the greedy policy if

T >
z∗W

(
− e−1/z∗

z∗

)
+ 1

z∗/d
(5)

and W (·) is the Lambert W function.
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Figure 4: The batch length above which greedy dominates batching for various arrival rates per day,

λ = 1.33, p = 0.037 and average criticality time d = 360 days. The bound T ∗ is independent of

q ∈ [0, 1], and is decreasing in p.

For 1.6 pairs arriving per day matching batching less frequently than daily is strictly

sub-optimal for all types (National Kidney Registry ≡ 1 pair per day).
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Model Simulations
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Figure 5: Match rate of agents under the greedy (dashed line) and the batching policies (solid line).

Batch lengths are in days. Comparisons are plotted for different arrival rates m (Figure 5a), different

imbalance values λ (5b), and different compatibilities (5c).
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Data Simulations



Simluations

• We use compatibility date from 1881 de-identified patient-donor pairs from the NKR

(between July 2007 to December 2014).

• Arrivals and departures follow our model (d = 360).

• We vary market size between 1/10 and 4 times the size of the NKR.

• We simulate the arrival of 10 million pairs for each policy.

21



arrivals
match rate waiting time in days

per day Greedy Patient Batching Greedy Patient Batching

7 days 30 days 60 days 7 days 30 days 60 days

0.01 10.7% 11.9% 10.4% 9.9% 9.3% 322 355 322 324 326

0.05 22.4% 23.4% 22.2% 21.2% 20.2% 279 324 280 283 288

0.25 34.3% 35.4% 33.8% 32.6% 31.2% 237 298 238 243 248

0.5 38.5% 39.5% 38.0% 36.8% 35.2% 222 290 223 228 233

1 42.0% 43% 41.6% 40.2% 38.6% 209 283 210 215 221

2 45% 45.8% 44.5% 43.1% 41.5% 198 278 200 205 211

4 47.2% 48% 46.8% 45.4% 43.6% 190 274 192 196 207

Table 1: Match rate and average waiting time over all pairs in simulations using NKR data.

• Patient leads to 35% longer waiting times, but ≈ 1% higher match rate.

• Greedy does better than 7d , 30d , 60d Batching in terms of waiting times and match rate.
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(b) Under-demanded pairs

Figure 6: Average waiting times (WT) and match rate (MR) in days under greedy (G) and patient (P)

policies. The left and right axes are WT and MR. The label (*) excludes pairs who have no match in the data.

Under-demanded patient-donor pairs are blood type incompatible, Over-demanded pairs are blood type

compatible, but tissue type incompatible.
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Figure 7: Averages of waiting times (left) and chance of matching (right) taken over copies for each pair in

the data. The axes correspond to the greedy and patient policies. Arrival 1 per day.
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Modelling Assumptions



Robustness

• Single Type.

• Simulations: results hold when there are not hard-to-match types λ = −1.

• Much simpler single type model can not match the data and answer how hard-and-easy to

match agents are differentially affected.

• Non-Vanishing Compatibility. (Ashlagi et al., 2013; Anderson et al., 2017; Akbarpour et

al., 2020, 2019; Nikzad et al., 2019)

• Simulations for p = q = c√
m

: Greedy still outperforms Batching and Patient.

• Simulations for p = q = c
m

: Greedy has a lower waiting time and Patient a higher match

rate.

• Different Objectives.

• We show that for all risk-neutral EU preferences with linear waiting cost Greedy is optimal in

large markets.

• Conjecture: holds for all smooth EU preferences (risk-averse/loving/non-linear waiting cost).

• Akbarpour et al., (2020) show that the loss ratio between different policies can be infinitely

better under patient matching.
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Conclusion

• We looked at when to match in large kidney exchanges.

• Compatibility graph:

• No single-type model can match aggregate features of the data.

• Simple and interpretable two type model that matches the data.

• Dynamic Matching:

• Greedy matching is optimal in large markets.

• For all risk-neutral EU preferences.

• For hard and easy-to-match agents.

• No trade-off between matching more agents and faster.

• Empirically at the size of the NKR.

• Greedy outperforms weekly, monthly, bimonthly matching.

• Patient leads to ≡ 1% higher match rate, but 35% longer waiting time.

• Patient matching makes easy-to-match agents better of and hurts hard-to-match agents.
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Thank You!
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Notes

• “Small” markets:

• Merging will increase the match rate (Agarwal et al. 2018, 2019). Emerging collaborations

between European countries.

• Chains will improve match rate and waiting times. Studies suggest that greedy does no harm

(Anderson et al 2017, Ashlagi et al . 2017, Agarwal et al. 2018).

• How to match with heterogeneous match qualities? (the next talk...)
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