DYNAMIC MODELS OF MATCHING

Alfred Galichon (NYU)
Joint work with Pauline Corblet (Sciences Po) and Jeremy Fox (Rice)

Dynamic Matching and Queueing Workshop
Columbia University, April 29-30, 2021

Slides available from
https://github.com/alfredgalichon/presentations/blob/master/2021-04-29_Galichon-slides.pdf

Introduction

- Dynamic aspects are crucial for matching problems
- In labor economics (human capital formulation)
- In family economics (fertility decisions)
- In mergers and acquisitions
- In school choice
- Etc.
- We offer a framework for these dynamic matching problems:
- with or without unobserved heterogeneity
- with finite or infinite (stationary) horizon
- with equilibrium prediction, structural estimation, comparative statics and welfare
- Large current literature on the estimation of static transferable utility (TU) two-sided (matching) models in the static case:
- Choo and Siow (2006), Fox (2010), Galichon and Salanié (2011), Dupuy and Galichon (2014), Chiappori, Salanié and Weiss (2019), Fox et al. (2018)
- Dynamic discrete choice literature on one-sided models since Rust (1987) assumes the decision maker's type evolves stochastically depending on the choice made at the previous period.
- Today's goal: investigate the dynamic aspect of static matching models by assuming that the match has an effect on types on both sides of the market. And show how to take models to data on changing relationships over time.
- NTU case when matches are forever (e.g. kidney)
- Unver (2010), Bloch and Cantala (2017), Doval (2021)
- Search and matching: the matching has no effect on partners, but match opportunities are scarse
- NTU case: Burdett and Coles (1997); Eeckhout (1999), Peski (2021)
- TU case: Shimer and Smith (2000) .

TU case:

- Erlinger, McCann, Shi, Siow and Wolthoff (2015), McCann, Shi, Siow and Wolthoff (2015) - 2 period sequential matching, with universities in a first period, then with firms.
- Choo (2015) studies a dynamic matching problem with a focus on the age of marriage

STATIC TU MATCHING WITH RANDOM UTILITY: SETTING

Populations:

- $z \in \mathcal{Z}$ agents to be matched, $z=x$ (worker) or $z=y$ (firms)
- $q_{z}=$ mass of agents of type z (fixed for now)

Matches:

- $a \in \mathcal{A}$ matches; $a=x y$ or $a=x$ (unassigned worker) or $a=y$ (unassigned firm)
- $w_{a}=$ cardinality of the match (2 for pair, 1 for unassigned)
- $\tilde{S}_{a}=$ joint transferable surplus of match a
- Choo-Siow's separable random utility assumption: $\tilde{S}_{a}=S_{a}+\sum_{z \in a} \varepsilon_{z}$, where (ε_{z}) vector of idiosyncratic payoff shifters (Gumbel for simplicity)

Equilibrium quantities:

- $p_{z}=$ payoff of z
- $\mu_{a}=$ mass of match a

STATIC TU MATCHING WITH RANDOM UTILITY: EQUILIBRIUM INSIGHTS

 (1)Result 1 (Choo-Siow): $\left(\mu_{a}\right)$ and $\left(p_{z}\right)$ are related by $\mu_{a}=\exp \left(w_{a}^{-1}\left(S_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)$ and $\left(p_{z}\right)$ solves $\sum_{a \ni z} \exp \left(w_{a}^{-1}\left(S_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)=q_{z}$ for each z.
(Proof in the appendix at the end of these slides).

STATIC TU MATCHING WITH RANDOM UTILITY: EQUILIBRIUM INSIGHTS

Note that at equilibrium, $\sum_{a \in \mathcal{A}} w_{a} \mu_{a}=\sum_{z \in \mathcal{Z}} q_{z}$. Hence, define

$$
Z(q, p, S)=\sum_{a \in \mathcal{A}} w_{a} \exp \left(w_{a}^{-1}\left(S_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)-\sum_{z \in \mathcal{Z}} q_{z}
$$

We have $\frac{\partial Z(p, q, S)}{\partial p_{z}}=\sum_{a \ni z} \mu_{a}$, with
$\mu_{a}=\exp \left(w_{a}^{-1}\left(S_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)$.
Therefore:
Result 2 (Galichon-Salanié): The equilibrium $\left(p_{z}\right)$ solves

$$
\min _{p} \sum_{z \in \mathcal{Z}} q_{z} p_{z}+Z(p, q, S)
$$

(This is the regularized - by random utility - version of Shapley-Shubrik where $Z(p, q, S)$ is a soft penalization of the stability constraints $p_{x} \geq S_{x}$, $p_{y} \geq S_{y}$ and $p_{x}+p_{y} \geq S_{x y}$.)

DYNAMIC MATCHING MODEL: SETTING

We now consider a two-sided Rust-type dynamic matching model with TU. Assume that individuals' types vary across periods, and that the transition depend on current period match.

Consider

$$
\mathbb{R}_{z a}
$$

the mass of individuals z induced forward at next period by one unit of match a.
For instance, if $a=x y$, worker x^{\prime} s type will transition to x^{\prime} with proba. $\mathbb{P}_{x^{\prime} \mid x y}$, and firm y^{\prime} 's type will transition to y^{\prime} with proba. $\mathbb{Q}_{y^{\prime} \mid x y}$. In that case,
$\mathbb{R}_{z a}=\sum_{x^{\prime}} 1\left\{z=x^{\prime}\right\} \mathbb{P}_{x^{\prime} \mid x y}+\sum_{y^{\prime}} 1\left\{z=y^{\prime}\right\} \mathbb{Q}_{y^{\prime} \mid x y}$.
Note that (as in Rust) the transition are Markovian:
(x chooses $a=x y$ w.p. μ_{a} / q_{x}) and then (transitions to x^{\prime} w.p. $\mathbb{R}_{x^{\prime} \mid x y}$).
Hence, conditional transition probability $x \rightarrow x^{\prime}$ equals to $\sum_{y} \mu_{x y} \mathbb{R}_{x^{\prime} \mid x y} / q_{x}$.

DISCOUNTING FUTURE VALUES

In that case, S_{a} needs to accrue for future-period payoffs p^{\prime}, in addition to short-term joint payoff Φ_{a}, and
$S_{a}=\Phi_{a}+\beta \sum_{z} \mathbb{R}_{z a} p_{z}^{\prime}=\left(\Phi+\beta \mathbb{R}^{\top} p^{\prime}\right)_{a}$.
Now redefine Z by inserting expression for S, we have
$Z\left(q, p, p^{\prime}\right)=\sum_{a \in \mathcal{A}} w_{a} \exp \left(w_{a}^{-1}\left(\left(\Phi+\beta \mathbb{R}^{\top} p^{\prime}\right)_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)-\sum_{z \in \mathcal{Z}} q_{z}$
Z is all we need to write the equilibrium equations of the model. Indeed,

- $\partial Z / \partial q_{z}=\sum_{a \ni z} \mu_{a} / q_{z}-1$ excess share of demand for type z
- $-\partial Z / \partial p_{z}=\sum_{a \ni z} \mu_{a}=$ mass of z at current period
- $\beta^{-1} \partial Z / \partial p_{z}^{\prime}=\sum_{a \in \mathcal{A}} \mathbb{R}_{z a} \mu_{a}=$ mass of z at next period

STATIONARY EQUILIBRIUM

A stationary equilibrium has

$$
p=p^{\prime} \text { [rational expectations] }
$$

and expresses as

$$
\left\{\begin{array}{l}
\frac{\partial Z(q, p, p)}{\partial q_{z}}=0[\text { market clearing for each type] } \\
\beta \frac{\partial Z(q, p, p)}{\partial p_{z}}+\frac{\partial Z(q, p, p)}{\partial p_{z}^{\prime}}=0 \text { [stationarity] }
\end{array}\right.
$$

Note that Z is concave in q and jointly convex in $\left(p, p^{\prime}\right)$.

STATIONARY EQUILIBRIUM, UNIT DISCOUTING

When $\beta=1$, set $F(q, p)=Z(q, p, p)$ is concave-convex and the equations of the model

$$
\left\{\begin{array}{l}
\partial F(q, p) / \partial q=0 \\
\partial F(q, p) / \partial p=0
\end{array}\right.
$$

are obtained as the saddlepoint conditions for the min-max problem

$$
\min _{p} \max _{q} F(q, p)
$$

Computation using Chambolle-Pock's first order scheme:

$$
\left\{\begin{array}{l}
q^{t+1}=q^{t}-\epsilon \partial_{q} F\left(q^{t}, 2 p^{t}-p^{t-1}\right) \\
p^{t+1}=p^{t}+\epsilon \partial_{p} F\left(q^{t}, p^{t}\right)
\end{array}\right.
$$

Surprising fact: algorithm works even for $\beta<1$ although min-max interpretation is lost.

SOME ECONOMETRICS

Now assume we want to solve the inverse problem: based on observed $\hat{\mu}_{a}$ recover information about Φ.
Parameterize $\Phi_{a}=\sum_{k} \phi_{a k} \lambda_{k}$ and look for λ.

Express

$$
\begin{aligned}
& Z\left(q, p, p^{\prime}, \lambda\right) \\
& =\sum_{a \in \mathcal{A}} w_{a} \exp \left(w_{a}^{-1}\left(\left(\sum_{k} \phi_{a k} \lambda_{k}+\beta \mathbb{R}^{\top} p^{\prime}\right)_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right) \\
& -\sum_{z \in \mathcal{Z}} q_{z}
\end{aligned}
$$

and note that the partial derivatives of Z with respect to the new variables λ_{k} also have a natural interpretation. Indeed,

$$
\frac{\partial Z}{\partial \lambda_{k}}=\sum_{a \in \mathcal{A}} \mu_{a} \phi_{a k}
$$

is the predicted k-th moments of ϕ.

IDENTIFYING EQUATIONS

Define a function H as

$$
H\left(q, p, p^{\prime}, \lambda\right)=Z\left(q, p, p^{\prime}, \lambda\right)-\sum_{a \in \mathcal{A}} \hat{\mu}_{a} \phi_{a k} \lambda_{k}
$$

which is jointly convex in (p, p^{\prime}, λ), and note that the indentifying equations are now

$$
\left\{\begin{array}{l}
\frac{\partial H\left(q, p, p^{\prime}, \lambda\right)}{\partial q}=0 \text { [market clearing] } \\
\beta \frac{\partial H\left(q, p, p^{\prime}, \lambda\right)}{\partial p}+\frac{\partial H\left(q, p, p^{\prime}, \lambda\right)}{\partial p^{\prime}}=0 \text { [stationarity] } \\
\frac{\partial H\left(q, p, p^{\prime}, \lambda\right)}{\partial \lambda}=0 \text { [moment matching] }
\end{array}\right.
$$

In the case $\beta=1$ this is still a saddlepoint problem, now

$$
\min _{p, \lambda} \max _{q} H(q, p, p, \lambda)
$$

for which Chambolle-Pock's first order scheme still applies. It even (mysteriously) still applies when $\beta<1$.

AgENDA

- Indentification issues à la Kalouptsidi, Scott \& Souza-Rodrigues (2019) and Kalouptsidi, Kitamura and Lima (2021).
- Theoretical convergence of the first order scheme outisde of $\beta=1$ (min-max).
- Empirical application: human capital accumulation on the labor market.
- With Dupuy, Ciscato and Weber: application to family economics (divorce, remarriage and the number of kids).
- Extention to imperfectly transferable utility (later).
- The next 'math+econ+code' masterclass on equilibrium transport and matching models in economics will take place June 21-25, 2021. More info on
http://alfredgalichon.com/mec_equil/
- Jules Baudet and I are organizing a kidney transplant hackaton for the math+econ+code. More info at

> http://alfredgalichon.com/kindey-transplant-hackaton/
and email us: ag133@nyu.edu or jules.baudet99@gmail.com if you are interested!

Appendix: CHOO AND SIOW'S MODEL

We need to determine

- $\mu_{a}=$ mass of matches of type a is formed so that $\sum_{a \ni z} \mu_{a}=q_{z}$
- $U_{z a}=z$'s share of surplus in a match a so that $S_{a}=\sum_{z \in a} U_{z a}$ and so that agent z in a match a gets $U_{z a}+\varepsilon_{a}$
- $p_{z}=$ average payoff of players of type z, so that $p_{z}=\log \sum_{a \ni z} \exp U_{z a}$

Logit model: probability that z chooses match a is
$\mu_{a} / q_{z}=\frac{\exp U_{z a}}{\sum_{a \ni z} \exp U_{z a}}=\exp \left(U_{z a}-p_{z}\right)$
hence
$\log \left(\mu_{a} / q_{z}\right)=U_{z a}-p_{z}$
Choo-Siow: summing over $z \in$ a yields $\mu_{a}=\exp \left(w_{a}^{-1}\left(S_{a}+\sum_{z \in a}\left(\log q_{z}-p_{z}\right)\right)\right)$.

