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Mining imagery archives to improve weather forecasts

Four decades of machine learning for land cover classification
Mining imagery archives to connect events to impacts

Factor Multiplicity - Cyclone impacts in coastal Bangladesh

New opportunities in the near-term future
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Deep Learning at 15 PFlops Enables Training for

Extreme Weather Identification at Scale
By Rob Farber

March 19, 2018

Petaflop per second deep learning training performance on the NERSC
(National Energy Research Scientific Computing Center) Cori supercomputer
has given climate scientists the ability to use machine learning to identify
extreme weather events in huge climate simulation datasets. Predictive
accuracies ranging from 89.4% to as high as 99.1% show that trained deep
learning neural networks (DNNs) can identify weather fronts, tropical cyclones,
and long narrow air flows that transport water vapor from the tropics called
atmospheric rivers. As with image recognition, Michael Wehner (senior staff

scientist, LBNL) noted they found the machine learning output outperforms
humans. [i]
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“Neural Networks for Postprocessing Ensemble Weather Forecasts?
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Observations of Cyclone-Induced Storm Surge in Coastal
Bangladesh
Soyee Chiu® and Christopher Small

Lamont-Doherty Earth Observatory
Columbia University
Palisades, NY 10964, US.A.
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Cyclone dila 2009

Westward landfall drove onshore winds, higher storm surge & flooding
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Spatiotemporal Characterization of Mangrove
Phenology and Disturbance Response:

The Bangladesh Sundarban
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Hyperspectral Imaging

Visible to Shortwave Infrared reflectance spectra resolve distinct molecular absorption features

Allows for mapping of soil composition & moisture, vegetation health, leaf water content & moisture stress, N content...

NASA AVIRIS
Airborne Visible Infrared
Imaging Spectrometer

224 channels x 10 nm

0.5 um



High Frequency Revist Satellite Constellations

Temporal evolution of visible+infrared spectral characteristics allow process mapping

SpectroTemporal feature spaces are higher dimensional, more complex and more strongly
clustered than spectral feature spaces. High dimensional characterization of change patterns

Landsat + Sentinel
SpectroTemporal Feature Space

Point Density
Lower Higher

{ & i wesd bbe I L 1
10005 2001 10015 002 0025 1003




