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Abstract

A leader wants to enact a general-interest policy but needs the support of ¢ members
of a committee who oppose the policy with heterogenous intensities. The leader sequen-
tially approaches the committee members: in each period, she chooses which member
to approach and what offer to make in exchange for his vote. We analyze two variants,
depending on the nature of the offer. In the transfer-promise model, the leader pays the
accepted offers only if she puts the policy to a vote; in the up-front-payment model, she
pays the accepted offers immediately even if she does not put the policy to a vote even-
tually. In the transfer-promise model, the policy passes in equilibrium if and only if the
leader’s gain is higher than the sum of the losses of the ¢ members who are least opposed;
whenever the policy passes in equilibrium, the leader makes offers close to zero to the set of
members who are least opposed to the policy, and the optimal sequence may require her to
first approach the most-opposed member among the set. In the up-front-payment model,
however, the leader does not necessarily buy the votes of the least-opposed members. The
equilibrium now features two phases: in the first phase, each approached member is indis-
pensable and thus compensated fully for his vote; in the second phase, each approached
member in dispensable and thus offered a payment close to zero. Even though the leader
may pay a significant amount for a vote, she is better off with the instrument of up-front
payments because it is a commitment device that allows her to pass policy that she would
not be able to with transfer promises. We also discuss several extensions including private
histories and simultaneous offers.
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1 Introduction

It is common practice for political leaders to use side payments to gain support of spe-
cific voting members or voting blocks on general-interest legislation and public policy.
As a well-known example, President Lyndon B. Johnson secured the critical support of
Charles Halleck, Republican Congressman of Indiana, in passing the Civil Rights Act by
offering him a NASA research facility at Purdue University. Other examples abound.!
Depending on the situation, the leader could be the President, the party whip, or a lobby-
ist.2 Similarly, the side payments could be targeted district spending (pork), commitment
to advance other legislation important to the member, valued committee assignments,
campaign funds and so on.

We refer to this kind of practice as “vote buying” in this paper. We introduce a simple
game-theoretical model to capture certain elements of this process — a resourceful leader
strategically using transfers to gain support from various members — that we consider
important. In our model, a leader, whose goal is to enact a new policy and needs ¢ votes
for it to pass, sequentially approaches members with varying degrees of opposition to the
policy, making an offer to each member in exchange for his vote. By accepting an offer, a
member commits to voting yes when the policy is up for a vote. Since the members are
heterogeneous in their preferences, which members’ votes should the leader buy? In what
sequence should the leader approach them? How much do the votes cost and under what
conditions will the policy get successfully enacted?

We address these questions in two variants of our model that differ in terms of the
nature of the offer. In the transfer-promise game, the offer is a promise to make a transfer
if a vote on the policy is held in exchange for the member’s vote. This is applicable when

the final bill that the members vote on bundles the policy and the transfers together. In

LOn the passage of the Civil Rights Act of 1964, see Caro [2012, chapter 23]. Other examples include
involvement of President Bill Clinton in the passage of NAFTA [Mayer 1998, chapter 8], or involvement of Dan
Rostenkowski, the chair of the U.S. House Ways and Means Committee, in the passage of the Tax Reform Act
of 1986 [Merriner 1999, chapter 8]. Evans [2004] describes the use of pork barrel projects for coalition building
in the U.S. Congress.

2The whip is the official who ensures party discipline by, among other things, making deals with party
members. For a comprehensive study of party whips in the U.S. political system, see Evans [2018].



the up-front-payment game, the offer is an up-front payment in exchange for the member’s
vote, which is not contingent on whether the policy is put up for a vote. This is more
appropriate when the leader’s offer is separate from the bill involving the policy, for
example, it could be a President’s offer to campaign on behalf of a congressional member.

In the transfer-promise game, we find that the policy passes if and only if the leader’s
gain is higher than the sum of the losses of the ¢ members who are least opposed to
the policy. Strikingly, whenever the leader is successful in getting the policy passed, the
payments that she makes are close to zero in equilibrium. This near costless capture
of legislators is reminiscent of the “Tullock Paradox,” the observation that rent-seekers
wanting political favors can bribe politicians at a cost much lower than the value of the
favor to the rent-seeker. It is interesting to note that our explanation for the paradox is
related but different from another explanation given in Dal B6 [2007]. Our result does
not rely on the contracts offered to members being contingent on the profile of other
members’ votes, an important assumption in Dal Bé [2007]. Even though the offers take
a simpler form in our model, we still obtain the nearly costless capture of members for the
following reason: Whenever a member is approached in equilibrium, he is “dispensable”
in the sense that if he rejects the offer, the policy still passes in equilibrium (since there
are other un-approached members whose votes the leader could still buy). This implies
that his rejection only delays the passing of the policy, and therefore he would accept an
offer close to zero when patient. Moreover, whenever the leader’s gain is high enough that
the policy passes in equilibrium, there exists a sequence of members along which everyone
is dispensable, resulting in the nearly costless capture.

Whose votes should the leader try to buy? One immediate response might be that
the leader should buy the votes of those least opposed to the policy. This is largely but
not always borne out in the transfer-promise model, and we also find that the order of
vote buying could be important. Specifically, let us order the members by their intensity
of opposition so that a higher index indicates higher intensity. Note that whenever the
policy passes in equilibrium, any member with an index (¢+ 1) or higher is dispensable at

the beginning of the game, but the gth member may or may not be. If the ¢gth member is



dispensable at the beginning of the game, then there exists a sequence of approaching the
q members who are least opposed to the policy such that each is dispensable along the
sequence, making it an optimal way of building a winning coalition. If the ¢th member
is indispensable at the beginning of the game, however, this is no longer feasible. In this
case, the leader must approach the (¢ + 1)th member first. After buying his vote, all
members become dispensable and the leader then approaches those (¢ — 1) members who
are least opposed in an arbitrary order.

In the up-front-payment game, however, it is no longer the case that the leader buys the
votes of those members who are least opposed to the policy. The structure of equilibrium
differs from that in the transfer-promise game now that an accepted offer is sunk cost for
the leader. We show that the equilibrium now features two phases: in the first phase,
each approached member is “indispensable” in the sense that if he rejects the offer, the
policy does not pass in equilibrium and therefore he needs to be compensated fully for his
loss when the leader buys his vote (the temptation phase); but as soon as some member
becomes dispensable, the equilibrium enters the second phase in which any approached
member is dispensable until the leader secures enough votes for the passage of the policy.
In this phase, the members are offered payments close to zero, just like in the transfer-
promise game (the exploitation phase).?

To answer the question what members’ votes the leader should buy, note that since
the payments made in the exploitation phase are negligible as players become sufficiently
patient, the leader’s goal is to minimize the total payment made in the temptation phase.
Our equilibrium characterization illustrates the basic tradeoff that the leader faces: the
temptation phase is longer when members included in that phase are less opposed to the
policy and shorter when members approached in that phase are more opposed to the
policy. This is because a member is more likely to be indispensable if the other members
are more strongly opposed to the policy. This highlights that endogenous sequencing
creates endogenous cost of buying a vote.

Even though the leader may end up paying certain members a significant amount

3We borrow the labels of temptation phase and exploitation phase from Genicot and Ray [2006].



in exchange for their votes in the up-front-payment game whereas she always pays a
negligible amount in the transfer-promise game, the leader is better off if she can offer
up-front payments instead of transfer promises. This is reflected in the result that in
both models, when the leader has a higher gain from the policy (a higher willingness to
pay), it is easier for the policy to pass and moreover, the cost of buying votes is lower
in equilibrium. Since up-front payment is sunk cost, the leader’s willingness to pay does
not diminish as she secures more votes and this allows the leader to get the policy passed
when it would not otherwise with transfer promises. So up-front payment can be deployed
as a commitment device on the part of the leader.

Related literature. Our paper is related to three strands of literature. The first is the
literature on vote buying. Most of this literature analyzes a model with two vote buyers
who move sequentially. The vote buyers either move once [Groseclose and Snyder 1996;
Banks 2000; Le Breton and Zaporozhets 2010; Le Breton, Sudholter, and Zaporozhets
2012] or repeatedly [Dekel, Jackson, and Wolinsky 2008, 2009; Morgan and Vardy 2011,
2012]. Unlike in our paper, a vote buyer’s move consists of simultaneous offers to all vote
sellers and vote sellers make their selling decisions simultaneously immediately before the
game ends.* These papers either predict that ‘near-median’ voters sell their votes or do
not make a prediction regarding the identity of the players who sell their votes. Different
from the rest of the vote-buying literature, the strategic interaction between vote sellers
is important in Neeman [1999] and Dal Bé [2007], but they do not address the question
of endogenous sequencing.

The second strand of literature our paper is related to is multi-agent contracting with
externalities. A typical application in this literature considers an incumbent firm trying
to sign exclusionary contracts with buyers in order to prevent entry by its competitors.
Unlike our paper, most of this literature either does not consider sequential nature of
contracting [Bernheim and Whinston 1998; Segal 1999, 2003; Bernstein and Winter 2012]

or assumes homogeneity of the members [Rasmusen, Ramseyer, and Wiley 1991; Rasmusen

4Spenkuch, Montagnes, and Magleby [2018] consider an extension of Dekel et al. [2009] in which the vote
buyers approach vote sellers sequentially in a predetermined order and show that the main predictions of Dekel
et al. [2009] continue to hold.



and Ramseyer 1994; Segal and Whinston 2000; Fumagalli and Motta 2006; Genicot and
Ray 2006; Chen and Shaffer 2014; Taryczower and Oliveros 2017, 2019].> Two exceptions
are Moller [2007] and Galasso [2008], but they restrict attention of sequential contracting
to two members.

The third strand of related literature is bargaining with endogenous sequencing. A
typical model in this literature studies a situation in which one player bargains with other
n players sequentially. For tractability, papers in this literature often either work with a
set of exogenously given sequences [Horn and Wolinsky 1988; Stole and Zwiebel 1996] or
restrict attention to the case of n = 2 [Marshall and Merlo 2004; Menezes and Pitchford
2004; Noe and Wang 2004; Marx and Shaffer 2007; Bedre-Defolie 2012; Krasteva and
Yildirim 2012a,b, 2019; Goller and Hewer 2015]. Cai [2000, 2003], Li [2010] and Xiao
[2018] allow for the bargaining sequence to arise endogenously but, unlike our paper,
focus on the case in which an agreement with all of the n players need to be reached

(unanimity).

2 Model

A leader wants to pass a new policy. She sequentially approaches the members of a
committee. With each approached member, she tries to reach a bilateral agreement,
offering a transfer in return for the member’s support. All actions are observable.

Formally, the game is played by the leader and a set of committee members N =
{1,...,n}, where n > 1. Passing the policy requires ¢ € {1,...,n} votes from the com-
mittee members. Each player’s payoff from the status quo is normalized to be 0. The
payoff from the new policy is y > 0 for the leader and —z; for each member i € N. We
assume that x; > 0 for each ¢ € N and index the committee members such that z; < z;41,
so a member with a higher index is more strongly opposed to the policy.5

The leader approaches the committee members in consecutive periods. Suppose that

®See Whinston [2006] and Rey and Tirole [2007] for surveys of this literature.
6 Assuming that x; > 0 is without loss of generality since any member with ; < 0 prefers the new policy to
the status quo and can thus be ignored in the analysis.



at the beginning of a period, the set of un-approached members is U and the number
of approached members who have accepted the offers is n,. The leader can choose to
approach a member in U, or initiate a vote or stop. If the leader decides to approach
a member ¢ € U, then she offers him a non-negative transfer in exchange for his vote.
Member ¢ either accepts the offer, thus giving the leader control of his vote, or rejects the
offer, and the game proceeds to the next period. If the leader decides to initiate a vote,
the policy passes if n, > ¢ and the status quo is maintained if n, < g, and the game ends.
If the leader decides to stop, the policy does not pass and the game ends. We consider
two variants of this game which differ in terms of the nature of the leader’s offer.

(1) Transfer promises: the leader’s offer is a promise to make a transfer if and when a
vote on the policy is held in exchange for the member’s vote.”

(2) Up-front payments: the leader’s offer is an up-front payment in exchange for the
member’s vote.

In the transfer-promise game, the payment of a transfer is contingent on the policy
being put to a vote. This applies to situations, for example, in which the final bill that
the members vote on bundles the policy and the transfers together. Note that transfer
promises are non-sunk cost to the leader as the bargaining process unfolds.

In the up-front-payment game, the payment is not contingent on whether the policy
is put to a vote. This is more applicable to situations in which transfer offers are separate
from the bill involving the policy. Since the transfers are made irrespective of whether or
not a vote on the policy is held, the payment is sunk cost to the leader.

The game ends either when the leader stops or a vote is held on the policy. To describes
the players’ payoffs at the terminal nodes, let N, be the set of members who accepted the
leader’s offers and for each i € N,, let 7; be the period in which the offer ¢; was accepted.
If a vote is held, let 7 denote the period. We assume that the players have a common

discount factor § € (0,1).

7An alternative assumption is for the leader’s offer to be a promise to make a transfer if and when the
policy passes in exchange for the member’s vote. The equilibria under this assumption are outcome equivalent.
Specifically, under this alternative assumption there could be an equilibrium in which the leader initiates a vote
anticipating that the policy would not pass. This is outcome equivalent to stopping under our assumption,
which we choose for analytical simplicity.



First consider the transfer-promise game. If no vote is held by the end of the game,
each player receives a payoff of 0. If a vote is held and the policy passes, the leader receives
a payoff of 0" (y — >,y i), and member i receives a payoff of 67 1(t; — x;) if i € N,
and 6"~ 1(—xz;) if i ¢ N,. If a vote is held and the policy does not pass, the leader receives
a payoff of 67~ 1(— > ien, ti), and member i receives a payoff of 5 L(t;) if i € N, and 0 if
i ¢ Ng.

In the up-front-payments game, if no vote is held or is held but the policy does not
pass, the leader receives a payoff of —3 N, 07~ 1t;, and member i receives a payoff of
87—, if i € N, and 0if i ¢ N,. If a vote is held and the policy passes, the leader receives
a payoff of 67ty — D ieN, 67 1¢;, and member i receives a payoff of —07 " ta; + 67t if
i € N, and —67 Ly if i ¢ N,,.

In the transfer-promise game, the transfers are paid when a vote on the policy is held
and hence the payoffs from the policy and from the transfers are discounted by the same
factor. In contrast, in the up-front-payment game, the transfers are paid immediately
upon the acceptance of the offers while the passage of the policy happens only at the end
of the game and hence the payoffs from the policy and from the transfers are discounted
by different factors.®

Histories are public and record identity of the approached members, the transfers
offered and members’ acceptance decisions. Strategies are maps from histories to available
actions. The solution concept we use is subgame perfect equilibrium (in which a member
who is indifferent between accepting and rejecting accepts).” For the rest of the paper,

we simply use the term equilibrium to refer to this solution concept.

8We assume that accepted transfers are paid immediately instead of at the end of the game in the up-front
payment model. This modeling choice make the analysis simpler for the following reason. We introduce a notion
of state at the end of section, and having the transfer paid immediately implies that paid transfers need not
enter the state since they are irrelevant for the continuation game whereas having the transfers paid at the end
of the game implies that paid transfers need to be part of the state since how much they cost the leader now
depends on when the game ends.

9This refinement restricts the behavior of an indifferent member who is not approached on the equilibrium
path. It is not needed in some well-known bargaining games, e.g., the ultimatum game, because the responder
is always approached on the equilibrium path. The refinement does not change the set of equilibria that are
observationally equivalent because for any subgame perfect equilibrium one can construct an outcome equivalent
subgame perfect equilibrium in which indifferent members accept.



In section 6, we relax some of the assumptions made in the model presented here.
Instead of assuming that histories are public, we show that some of the results still hold
and discuss how some change when histories are private — in particular, when the members
do not observe who have been approached before. Similarly, instead of assuming that
members care only about the outcome of the policy (and the transfers they receive if
any), we discuss what happens if they care about how they cast their votes. We also
consider a simultaneous-offer extension allowing the leader to approach more than one
member in each period. Other assumptions, for example, that the leader has all the
bargaining power and cannot re-approach members, have been relaxed in related work.!?

We introduce the notion of states to facilitate the analysis. Recall that a history at the
beginning of a period records the set of members who have been previously approached, the
transfers offered to them, and the members’ acceptance decisions. For the transfer-promise
game, a state is (S,7,t), where S C N, S # @, r € {1,...,q} and t > 0, corresponds to a
set of histories such that the set of members who have been previously approached is N\ S,
the number of members who have sold their votes to the leader is ¢ —r and the sum of the
promised transfers to these members is ¢. That is, state (S,r,t) corresponds to histories
in which the set of un-approached members is S, the leader still needs support from r
members in order for the policy to pass and the leader has already promised to pay a total
of ¢t to the members who have accepted the offers. For the up-front-payment game, we do
not include the transfers already accepted and paid in a state since they do not affect the
equilibria in the subgames. Hence, we denote a state by (.5, r) in the up-front-payment
game. Let S = {(S,7,t) € 2V x Z x R, |S # @ A1 < r < |S|} be the set of all states

(dropping the R, dimension for the sunk cost model).!! Note that given any state in S

Taryczower and Oliveros [2019] study how the allocation of bargaining power affects contractual outcomes
between a principal and multiple agents. Segal and Whinston [2000] and Genicot and Ray [2006] allow for
re-approaching in models of contracting with externalities. Re-approaching has offsetting effects on the cost
that the principal incurs, depending on whether the horizon is finite or infinite; it makes agents more demanding
because the principal is no longer committed to no renegotiation, and it makes agents less demanding because it
intensifies competition among them. In Segal and Whinston [2000] the latter effect dominates and re-approaching
benefits the leader, while it has opposite effect in Genicot and Ray [2006]. We conjecture that similar effects
would arise in our model if re-approaching was allowed.

There are states not in S that could arise in the extensive form: for example, there are subgames in which
r > | S|, but since they are not interesting to analyze, we exclude them from S.



and any two histories inducing that state, the subgames following the two histories are
identical and hence the two subgames have the same set of equilibria. Let T'(.S, 7, t) denote
a subgame starting with state (S, r,t) in the transfer-promise game and I'(S,r) denote a
subgame starting with state (S, r) in the up-front-payment game. Then the entire game

is I'(N, ¢,0) in the transfer-promise game and I'(V, ¢) in the up-front-payment game.

3 Transfer promises

We begin by studying the model in which the leader offers a transfer promise in exchange
for a member’s vote. We first establish conditions under which the policy passes in equi-
librium and then characterize the optimal sequence in which the leader approaches the

members and how much transfer promises she offers them in equilibrium.

3.1 When does the policy pass?

Consider a subgame I'(S,7,t). Proposition 1 below says that whether the policy passes
in equilibrium depends on how the leader’s gain (net of the transfer promises already
accepted) compares with the sum of the losses of the » members in S least opposed to
the policy. Applying this result to the whole game, we immediately have that whether
the policy passes in equilibrium depends on whether the leader’s gain from the policy is
strictly higher than the sum of the losses of the ¢ members least opposed to the policy.
Given S C N and 0 < r < |S|, let S” C S denote the set of the r members in S who

have the lowest losses from the policy. Let S™ = @ if r = 0.

Proposition 1. Suppose the leader offers transfer promises. Consider a subgame I'(S,r,t)
where v < |S|. In any equilibrium, (a) if y —t > ZjeST xj, the policy passes, and (b) if

y—1< Zjesv" xj, the policy does not pass.

To gain some intuition for part (a), note that a member i accepts an offer greater than

his loss.!'? Hence, when the leader needs r votes, if her gain from the policy (net of the

12Tf we restrict attention to undominated strategies, then clearly a member i would accept an offer greater
than his loss, but our result still holds even if weakly dominated strategies are allowed.

10



offers already accepted) is larger than the sum of 7 members’ losses, she can guarantee a
positive payoff by approaching these r members at the end and making each an offer that
just compensates for his loss. Since the leader’s payoff is 0 when the policy does not pass,
she is better off if she buys these votes and therefore the policy passes in any equilibrium.

For part (b), if the cardinality of S equals r (unanimity), then each member accepts an
offer only if it at least compensates for his loss. Hence, if the leader’s gain from the policy
(net of the offers already accepted) is lower than the sum of the members’ losses, then
she can only receive a negative payoff by getting the policy passed, whereas she receives
a payoff of 0 if the policy does not pass. Given that the leader can choose to stop, the
policy does not pass. If cardinality of .S equals r 4+ 1, then the member approached first
will accept an offer only if it at least compensates for his loss since the member foresees
that without his vote, the policy will not pass in the continuation game. Since every
member can reason like this and thus demands an offer that makes him at least even,
the leader cannot buy enough votes without making offers that exceed her gain from the

policy. This induction argument shows that the policy does not pass in any equilibrium.

3.2 Equilibrium sequencing with transfer promises

Proposition 1 establishes that if y > Y7 | 2, then the policy passes in any equilibrium. In
what sequence should the leader approach the members and what transfer promises does
she offer them in equilibrium? The answer is immediate under unanimity (¢ = n): the
leader offers each member ¢ a transfer promise equal to z; and the sequence of approaching
does not matter. In what follows, we consider ¢ < n. It is useful to introduce the notion

of “(in)dispensability.”

Definition 1. In the transfer-promise game, consider state (S,r,t) where r < |S|. (a)
We say that member i € S is indispensable in (S,r,t) if ZjeST rp<y—t< Zjesr xj.

(b) We say that member i € S is dispensable in (S,r,t) ify —t > EjeSii zj.

Intuitively, a member is indispensable in a state if the policy does not pass in equi-

librium without the leader securing the member’s vote in that state whereas a member

11



is dispensable in a state if the policy still passes in equilibrium even without the leader
securing the member’s vote in that state. A member’s strategic position is stronger when
he is indispensable than when dispensable. When indispensable, he accepts the leader’s
offer only if it at least compensates for his loss since by rejecting the offer, the policy will
fail to pass. When dispensable, however, he anticipates that the policy still passes even if
he rejects the offer. Since his rejection only delays the passage, he is willing to accept an
offer that just compensates him for a sooner passage ((1 — d)x; to member 7). Note that
when 9§ is sufficiently high, a dispensable member is willing to accept an offer close to 0,
an offer lower than any offer needed to secure an indispensable member’s vote, no matter
what that member’s loss is.

Fix a transfer-promise game and suppose that the policy passes in equilibrium. Let
A? denote the set of members who are dispensable at the beginning of the game. Note
that since the policy passes in equilibrium, that is, y > "7 | 2;, any member in {q +
1,g+2,...,n} is in A% As Proposition 2 below shows, what members’ votes the leader
buys depends on whether the gth member is in A%,

If the gth member is in A%, then it is optimal for the leader to approach the members
who have the lowest ¢ losses. She starts by approaching a member in A9N {1, ..., ¢} since
he is dispensable; after buying this member’s vote, every remaining member ¢ € {1, ..., ¢}
becomes dispensable and therefore will accept an offer (1—9)x;, and the leader approaches
them in an arbitrary sequence. Since the members being approached in this sequence have
the lowest losses among all, the leader cannot improve her payoff by approaching others.

If the gth member is not in A%, then any member with a lower loss is also not in A%,
Hence, if the leader starts by approaching any of them, she has to make an offer equal
to the loss. However, since member (g + 1) is in A%, she only needs to offer (1 — 6)xg41.
Moreover, after securing this member’s vote with an offer close to 0, any member in
{1,2,...,q} becomes dispensable in the continuation game, and therefore it is optimal for
the leader to approach the members with the lowest (¢ — 1) losses in the continuation

game in an arbitrary sequence. The following proposition formalizes the results.
Proposition 2. In the transfer-promise game, suppose n > q and y > Z?zl ;.

12



(a) If y > 23;11 T; + Tqy1, that is, member q is dispensable at the beginning of the game,
then in any equilibrium, the leader starts by approaching a member in A% N {1,...,q}
and then approaches the remaining members in {1,...,q} in arbitrary order; when she
approaches member i, she offers t; = (1 — 0)x; and it is accepted.

(b) If y < Zg:_ll Ti + Tgt1, that is, member q is indispensable at the beginning of the
game, then there exists 6 < 1 such that for 6 > 0, in any equilibrium, the leader starts
by approaching member q + 1 and then approaches members in {1,...,q — 1} in arbitrary

order; when she approaches member i, she offers t; = (1 — §)x; and it is accepted.

4 Up-front payments

We now turn to the model in which the leader offers an up-front payment in exchange for
a member’s vote. Note that under unanimity, since every member ¢ has the right to veto,
he accepts an offer if and only if it compensates for his loss x;, appropriately discounted.
Specifically, in any state (S, r) such that |S| = r, if member i is approached in equilibrium,
he accepts the offer t; if and only if t; > 0"z;. (Since the policy passes after the leader buys
the votes of the remaining 7 members but the payment is up front, the member is willing
to accept any offer greater than ¢"xz;.) It follows that the leader’s payoff is 6" (y —> ;. g i)
by getting the policy pass, and therefore the policy passes in equilibrium if this payoff is
positive, that is, y > >, ¢ x;. Another special case is when = 1. Since the leader needs
only one vote for the policy to pass, once the leader buys one member’s vote, she does
not approach any more members and initiates voting immediately. Whether the offer is
an up-front payment or a transfer promise does not matter for the incentives, implying
that the condition for the policy to pass in equilibrium is ¥ > 1. In contrast, when the
leader needs more than one vote for the policy to pass, whether the offer she makes is
up-front payment or transfer promises has important implications, which we illustrate by

the following example.

Example 1. Suppose n = 3 and q = 2. We first show that when y > x1 + x2, then the

policy passes in equilibrium with offers close to 0 when the players are patient, similar to

13



what happens in transfer-promise game. We then show that if xo < y < x1 + x2, then the
policy still passes in equilibrium in the up-front-payment game, even though it does not in
the transfer-promise game, but in this case, not all offers are close to 0. We finally show
that if y < xa, then the policy does not pass even in the up-front-payment game.

First consider y > x1 4+ xa. If member 3 is approached first, then he is willing to
accept any offer greater than x36%(1—3) because even if he rejects the offer, the policy will
still pass in the continuation game and therefore his rejection only delays the passing of
the policy by one period. Hence, he accepts any offer t such that t — 6%xs > §%x3. After
member 3’s vote is bought, member 1 is willing to accept any offer greater than x15(1—9)
because his rejection only delays the passing of the policy by one period. Note that both
offers are close to 0 for patient players — we refer to them as “exploitation” offers.'®

Now consider xo < y < x1 + x2. If member i is approached first, he is willing to
accept an offer if and only if t; > 6%x;. To see this, note that if member i rejects the
offer, then the policy will fail to pass since the leader would need to buy each remaining
member’s vote, which is too costly given that y < x1 + xo9. But after securing member 1’s
vote by offering him t; = 8?1 (we call this an “temptation” offer), now the leader can
buy member 3’s vote by making him an exploitation offer (1 — §)xs. Since the leader can
buy enough votes at a cost lower than y, the policy passes in equilibrium.

Finally consider y < xo. For the same reason as discussed above, the leader has to
make a temptation offer to the member approached first. Since y < xo, it is too costly to
tempt member 2 or 3. Furthermore, even if the leader buys member 1’s vote first, whoever
the leader approaches next would still accept only a temptation offer, which would be too

costly. Hence, the policy does not pass in equilibrium even in the up-front-payment game.

4.1 When does the policy pass?

The next proposition says that given a state (S, ), if the players are sufficiently patient,

the policy passes if and only if y is above a threshold W (S, r), defined recursively as

13This is the optimal sequence if y < 21 + x3; if ¥ > 21 + 23, then it is optimal to approach member 2 first,
followed by member 1.
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follows. For any state (S,r), denote by max S the member in S with the highest loss and

let S’ =S\ {max S} (@' = @ by convention). Let

W(S,r) = min max ¢ > a;, W((S\T),r - |T) . (1)
Te25 ©
JjeT
Proposition 3. Suppose the leader offers up-front payments. Consider a subgame I'(S,r).
For generic y, there exists 6 < 1 such that for 6 > 6, in any equilibrium, the policy passes

if y > W(S,r) and the policy does not pass if y < W(S,r).

To understand why W (.S, r) is the threshold that determines whether the policy passes
in equilibrium, it is useful to classify the members in terms of their bargaining positions

given a state.

Definition 2. A member i € S in state (S,r) is
1. dispensable if y > W (S '\ {i},r),

2. indispensable if y € (W(S\ {i},r — 1), W(S\ {i},r)).

The definition of dispensability and indispensability here parallel those in the model
of transfer promises. As implied by Proposition 3, a member is indispensable in a state
if the policy does not pass in equilibrium without the leader securing the member’s vote
in that state whereas a member is dispensable in a state if the policy still passes in
equilibrium even without the leader securing the member’s vote in that state. As before,
when a member is indispensable, he has a strong bargaining position and thus accepts
the leader’s offer if and only if it at least compensates for his loss (with the appropriate
discounting), but when a member is dispensable, he has a weak bargaining position and is
therefore willing to accept an offer that just compensates him for a sooner passage of the
policy. We referred to these two distinct kinds of offers as temptation and exploitation

offers, as formalized in the following definition.

Definition 3. Fiz a profile of strategies and consider the resulting sequence of approached

members. Suppose member i is offered t; in state (S,r). We say that member i is tempted
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if t; = 6"x; and that member i is exploited if t; = 0"z;(1 — 0). We say a profile is in a
temptation phase when the approached member is tempted and is in an exploitation phase

when the approached member is exploited.

Lemma 1. Suppose the leader offers up-front payments. For generic y, there exists § < 1
such that for § > 68, in any equilibrium, if member i is approached in a state in which he
is indispensable, then he is tempted, and if member i is approached in a state in which he

1s dispensable, then he is exploited.

Lemma 2. Given a state (S,r), if there exists a member i € S who is dispensable, then
(i) member max S is dispensable in (S,r); (ii) any member in S\ {i} is dispensable in
state (S'\ {i},r — 1), which implies that starting in state (S,r), there exists a sequence of

r members along which each member is dispensable.

Since the payment made to a dispensable member goes to 0 as the discount factor
goes to 1 by Lemma 1, once an exploitation phase starts in equilibrium, it remains in that
phase until the leader buys all the votes she needs. Moreover, since the payment made to
an indispensable member equals his loss (in the limit as the discount factor goes to 1), the
total payment that the leader makes is the sum of the losses of the members approached
in the temptation phase. Hence, if there exists a set of members such that the following
two conditions hold: (i) the sum of their losses is below y, and (ii) after the leader buys
their votes, at least one remaining member is dispensable, then the policy will pass in

equilibrium. Conditions (i) and (ii) are reflected in the definition of W (S, r).

4.2 Equilibrium sequencing with up-front payments
To see which members are tempted in equilibrium, consider the following problem for any
state (.S, r):

(S, r,y) = min > xistoy>W(S\T),r—|T)). (2)
JjeT

The constraint ensures that after the leader buys the votes of members in the set T,

there exists one member in the remaining set who is dispensable. As discussed above, the
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leader’s payments to members who are dispensable are close to 0 and therefore she is only
concerned about her payments to members in 7', which equals the sum of their losses.
Hence, the least costly way for her to buy enough votes to get the policy passed involves
tempting members in 7' that solves (2). It also follows that the payment that the leader
makes in equilibrium is close the value of the problem, that is, equals II(S, r, ).

We summarize these characterizations of the equilibrium in Proposition 4 below.

Proposition 4. Suppose the leader offers up-front payments and y > W(N,q). For
generic y, there exists 6 < 1 such that for § > & following results hold.

(a) In any equilibrium, the leader approaches ¢ members and each accepts her offer.

(b) Any equilibrium consists of two phases (with one possibly empty), a temptation phase
followed by an exploitation phase.

(c) In any equilibrium, the set of members included in the temptation phase solves the
optimization problem (2).

(d) Let T be the members included in the temptation phase and E be the members included
in the exploitation phase. For any order of the members in which the members in T are
before the members in E and in which the first member in E is dispensable in (N \ T, r —
|T|), there exists an equilibrium in which the members are approached in that order.

(e) The leader’s equilibrium payoff is constant across equilibria and its limit is y—II(N, q,y) >

0asd— 1.

When y > W(N, q) the policy passes in any equilibrium by Proposition 3, and Propo-
sition 4 shows that in any such equilibrium, the leader approaches exactly ¢ members,
offers are all accepted, the approached members are first tempted and then exploited, the
set of tempted members solves (2), and any equilibrium multiplicity does not affect the
leader’s payoff.14

Propositions 3 and 4 provide characterization of all equilibria by linking properties of

the equilibria to the W and II functions. However, it is not possible to derive closed-form

MMultiple equilibria may exist but affect only the members’ payoffs. This reflects two main sources of
equilibrium multiplicity. First, when two members have identical loss, the leader might be indifferent as to
which one to approach. Second, the leader is indifferent between all possible orders within the temptation and
the exploitation phase, provided the latter starts with a dispensable member.
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expressions for these functions except in special cases.'®> We provide a discussion of these
special case in the Supplementary Appendix.

Even though close-form solutions are in general not obtainable, the equilibrium char-
acterization given in Proposition 4 establishes the basic trade-off that the leader faces: a
shorter temptation phase with more opposed members versus a longer temptation phase

with less opposed members. To illustrate, we provide the following example.

Example 2. Suppose n = 4, ¢ = 3, x; = i> and y = 9.5. Calculation shows that
W(N,q) =9 <y, implying that the policy passes in equilibrium. Also, since y < W (N \
{4},3) = z1 + x2 + x3 = 14, implying that the most-opposed member is not dispensable at
the beginning of the game. Hence, the temptation phase is nonempty. If the temptation
phase includes only one member, then it cannot be member 1 or 2 since after the leader buys
his vote, the most-opposed member is still indispensable, but if the leader starts by tempting
member 3 (or member 4), then the most opposed member does become dispensable after
this vote is bought and we reach the exploitation phase. Moreover, if the temptation phase
includes two members (for example, members 1 and 2), then the most-opposed member
becomes dispensable after their votes are bought and we reach the exploitation phase. Since
r14+ 2o =144=5<9 = x3, it is less costly for the leader have a longer temptation
phase with two less opposed members in this example. The equilibrium temptation phase

consists of members 1 and 2, followed by the exploitation phase, consisting of member 4.
Comparative statics. We next discuss how equilibrium outcomes vary with parameters.

Proposition 5. Consider state (N,q) and any y:
1. W(N,q) 2 W(N,q—1) and II(N,q,y) 2 II(N,q — L,y) if ¢ = 2,

2. W(N,q) > W(N,q) and TI(N, q,y) > II(N,q,y) if [IN| < |N| and z; > &; for all

ie{l,...,n},

3. W(N,q) is independent of y and II(N,q,y) > (N, q,y') if v/ > y.

5For any state (S, r) with |S| —r = 1, problem (3) defining W is a special case of the Partition problem and
problem (2) defining II is a special case of the Knapsack problem. Both of these problems are well known in
computer science and combinatorial optimization and both are NP-hard.
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4. W(N,q) 2 W(N\{i},q — 1) and Il(N, q,y) > IL(N \ {i},q — 1, y) for any i € N if

q=>2,

The first three parts of the proposition show that the condition under which the policy
passes in equilibrium is less stringent and that the (limiting) cost of the policy passing
is lower either when the passage of the policy requires fewer votes (part 1), or when the
committee is larger or is composed of weakly opposed members (part 2), or when the
leader gains more from the policy (part 3). This implies that smaller committees and
fewer required votes have offsetting effects on the passage of the policy and the cost of
the passage. Nevertheless, the fourth part shows that the effect of the required votes
dominates. That is, decreasing the size of the committee benefits the leader if combined

with the same decrease in the number of votes required for the policy passing.

5 Discussion

Cost of vote buying. One main insight of our analysis is that by endogenously sequenc-
ing the members, the leader creates a divide-and-conquer mechanism which enables her
to buy the votes at minimal cost, provided that her gain from the policy is high enough.
This provides an explanation for the Tullock Paradox, the observation that the amount
that rent-seekers pay is often small relative to the size of the rent they are after. This
also highlights the importance to distinguish the cost of vote buying (observable) and the
intensity of opposition (not directly observable). A low cost of buying a vote does not
necessarily reflect a low intensity of opposition.

Our analysis highlights the difference between up-front payments and transfer promises
in terms of their different commitment values given the sequential nature of our model.
Dekel, Jackson, and Wolinsky [2008] also compares up-front payments and campaign
promises, but the vote sellers in their model are not strategic and they focus on the
competition between two vote buyers. These differences in modeling lead to critical dif-
ferences in results too: they find that with campaign promises, the equilibrium outcome

may involve substantial offers to voters whereas with up-front payments, the voters receive

19



minimal transfers, the opposite of our findings.

Committee composition and passage of policy. It is easier for the leader to pass the
policy when facing less opposed members, indicated by the lowered threshold for the policy
to pass, an implication of both Propositions 1 and 5. But if we keep the total opposition
of the committee, measured by ), x;, constant, what composition of the committee
poses the biggest challenge for the leader? Under unanimity rule, the composition does
not matter since the leader has to compensate every member for the full loss, but it
does matter for non-unanimity. Define the most effective opposition as maximizing the
threshold for passing the policy subject to the constraint that ),y z; = ¢.'® Under any
non-unanimity rule, in the transfer-promise game, a homogenous committee poses the
most effective opposition; in the up-front-payment game, the most effective opposition is
posed by a committee which consists of two homogenous groups: one group consists of ny,
equally strongly opposed members, where n;, is multiple of n — ¢+ 1, and the other group
consists of the remaining members, who are weakly opposed, that is, having z; = ¢ (since
we do not allow x; = 0). We provide the details in Proposition A2 in the Supplementary
Appendix.

Welfare implications. We next discuss welfare implications of vote buying, using
the utilitarian welfare criterion. We restrict attention to the transfer-promise game
since we have close-form solutions there, but qualitatively similar results hold in the
up-front-payment game. The utilitarian criterion dictates that the policy passes when
Y= ien Ti > 0 and does not pass when y— . n z; < 0. With vote buying, Proposition
1 shows that the equilibrium outcome is utilitarian-efficient under unanimity and might
be utilitarian-inefficient under voting rule ¢ < n. The inefficiency arises when the policy
passes in equilibrium even though utilitarian-efficiency dictates that it should not, that
is, whenever y — .-y 2; <0 <y — > ,nyq i In this case, because the policy does not
pass without vote buying, vote buying worsens welfare. On the other hand, vote buying

improves welfare when utilitarian efficiency dictates that the policy passes.

16T the up-front-payment game, the threshold is not maximized since we do not allow z; = 0 but the upper
bound is reached arbitrarily closely.
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These observations ignore the (unmodeled) members who are in favor of the policy.
To account for them, let z be the sum of their gains from the policy. With vote buying,
the equilibrium outcome is utilitarian-inefficient either because the policy passes although
it should not, when y — >,y i +2 < 0 <y — >, yq T, OF because the policy does not
pass although it should, when y — . yq i <0 <y — >,y o + 2. When the efficiency
cutoff y — .y ;i + 2 is strictly less than the equilibrium cutoff y — .. yq 2, the welfare
implications of vote buying are the same as before.!” On the other hand, vote buying
improves welfare when the cutoffs are such that y — .. ne @i <y — > ;cn @i + 2. This is
because either the policy passes in equilibrium, in which case vote buying improves welfare
because the policy should pass according the utilitarian welfare criterion, or does not pass

in equilibrium, in which case the outcome is the same with or without vote buying.

6 Extensions

6.1 Private histories

Since negotiations are sometimes conducted behind close doors and results kept private, it
is interesting to investigate what happens in equilibrium with private histories. To do this,
we modify the main model so that the leader’s previous actions (except for the offer made
to the member) are not directly observable to a member but keep all other assumptions
unchanged. To facilitate comparison between the results in the main model and results
in this extension, we define an equilibrium outcome to include the sequence of members
that the leader approaches, the offer made to each member, their acceptance/rejection
decisions, and whether the policy passes. (For the game with private histories, we use
Perfect Bayesian Equilibrium as the solution concept since there is no proper subgame
and SPE is too weak a solution concept.)

In the transfer-promise model, we show that the equilibrium outcome with public

histories can be supported as an equilibrium outcome with private histories. Under una-

"Even with the unmodeled members who are in favor of the policy, our underlying assumption is that the
policy does not pass without vote buying. Otherwise, there would be no need for the leader to buy votes.
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nimity, this is immediate since with public histories, the leader offers each member ¢ a
transfer of x; and any sequence is optimal, which still holds with private histories. Under
non-unanimity, first consider the case in which member ¢ is dispensable. As shown in
Proposition 2, with public histories, the leader approaches the members in {1,...,¢} in
some sequence in equilibrium and offers each (1 — §)z;, which is accepted. To see why
this equilibrium outcome is sustainable with private histories, consider the profile such
that any member i € N accepts offer ¢ if and only if ¢ > (1 — §)z; and the leader follows
the same sequence as she does in the equilibrium with public histories. The leader has no
profitable deviation since this is the least costly way of buying ¢ votes; and no member
has any profitable deviation either since he is indeed dispensable given the other players’
strategies. Next consider the case in which member ¢ is indispensable. With public his-
tories, the leader first approaches member ¢ + 1 and then the members in {1,...,¢ — 1} in
some sequence in equilibrium and offer each (1 — d)x;, which is accepted. This outcome
is supported in equilibrium with private histories by the following strategy profile: any
member ¢ € N \ {¢} accepts offer ¢ if and only if ¢ > (1 — §)x; and member ¢ accepts an
offer ¢ if and only if ¢ > z, and the leader follows the same sequence as she does in the

equilibrium with public histories.'® Hence, we have established the following.

Proposition 6. In the transfer-promise game, suppose y > 2321 ;. Any equilibrium

outcome with public histories is an equilibrium outcome with private histories.

With up-front payments, however, it is no longer the case that any equilibrium outcome
achieved with public histories can still be supported with private histories. To illustrate,
recall that in Example 1, when xo < y < 1 4 22, the equilibrium involves the leader ap-
proaching member 1 first, making a temptation offer 52z, and then approaching member
3, making an exploitation offer (1 — §)x3. With private histories, however, this cannot be
supported as an equilibrium outcome. To see this, note that with public histories, player
1 is made a temptation offer because he is indispensable, that is, if he rejects the offer, the

policy will not pass. When his rejection is not observable to the other members, however,

18Since member ¢ is not approached on the equilibrium path, we specify his belief to be such that if he is
approached, the leader needs one vote and he is the only member remaining.
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he is no longer indispensable — the leader can still get the policy passed by offering member
3 an exploitation offer and member 2 a temptation offer, and therefore the equilibrium
collapses. What equilibrium outcomes can be supported? As the following result shows,
under non-unanimity rule, when players’ rejections are not observable, it is easier to make
them dispensable. Specifically, if y > 1, an equilibrium exists in which the leader exploits

members in {2, ...,q + 1}, using member 1 as a threat point.

Proposition 7. In the up-front-payment game with private histories and non-unanimity
rule, if y > x1, then the following is an equilibrium outcome. The leader approaches
members in {2,...,q + 1}, making each an exploitation offer, which is accepted and the

policy passes.

6.2 Simultaneous offers

In our main model, the leader makes offers to the member sequentially. What happens if

she makes multiple offers to multiple members in a single period?

6.2.1 Simultaneous benchmark

We first consider a benchmark in which the leader must make offers to all members
simultaneously, providing a contrast to the sequential model.

Consider the following extensive-form game. In the first period, the leader either offers
a profile of transfer promises t = (¢1,...,t,) € R, or stops, or initiates a vote. If the
leader stops or initiates a vote, then the game ends and the players receive their payoffs.
If the leader offers t, then the members sequentially, in some predetermined order, decide
either to accept or reject the leader’s offer and the game then proceeds to the second
period in which the leader chooses either to initiate a vote or to stop. The game then
ends and all players receive their payoffs. Let a = (ay,...,a,) be the profile of members’
actions, where for each ¢ € N, a; = 0 indicates rejection and a; = 1 indicates acceptance.

If the leader stops in any of the periods or initiates a vote in the first period, the

policy does not pass and all players receive zero payoff. If the leader initiates a vote in
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the second period, the leader’s payoff is y — ) ..y a;t; and member i’s payoff is —x; + a;t;
if ey @i > q (the policy passes) and the leader’s payoff is — ., a;t; and member i’s
payoff is a;t; if 3,y a; < ¢ (the policy does not pass) if >,y a; < q.'? Players discount
payoffs by § € (0, 1] between periods.

We study pure strategy subgame perfect equilibria. We assume that member who is
indifferent between accepting and rejecting and is pivotal, that is, would change whether
the policy passes by changing her action, accepts. Below we call a pure strategy subgame

perfect equilibrium with this acceptance rule simply an equilibrium.

Proposition 8. Consider the simultaneous vote-buying game with transfer promises. If
Zgzl x; > vy, then the policy does not pass in any equilibrium. If Zgzl x; <y, then in any
equilibrium, (a) the policy passes, (b) ¢ members are offered strictly positive transfers, (c)

if member i is offered a strictly positive transfer, then t; = x; and (d) Y ;cnti = Dty -

As can be seen from Proposition 8, the condition for the policy passing in equilibrium
is the same whether the leader make transfer promises simultaneously or sequentially: it
depends on how her gain from the policy compares with the sum of the lowest ¢ losses of
the members. Moreover, the set of members who receive positive transfers are (largely)
the same whether they are approached simultaneously or sequentially: it is the set of
members who are least opposed to the policy (with the caveat that under sequential
vote-buying, sometimes the g+ 1th member needs to be bought). However, the amount of
transfers they receive are drastically different: when approached sequentially, the members
receive exploitation offers (offers close to 0), whereas when approached simultaneously,
the members receive temptation offers (offers that compensate fully their losses). This
is because when the leader has to make simultaneous offers to all members, she can no
longer use other members as threat points. Without the divide-and-conquer mechanism
at her disposal when she could approach the members sequentially, she now has to buy ¢

votes by compensating the members fully for their losses.

9Notice that the payoff of a member i who rejects is —z; and 0 when the policy passes and does not pass
respectively, and the payoff of a member ¢ who accepts is —z; + ¢; and is in {0,¢;} when the policy passes and
does not pass respectively.
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Analogous results hold if the offers are up-front payments instead of transfer promises.
The condition for the policy passing and the set of members who receive strictly positive
transfers in equilibrium are identical. The only difference is that the temptation offers
with up-front payments are dz; instead of x;. This is because the periods in which the
transfers are received and the policy passes are different.??

We have analyzed an extensive form in which the members make acceptance/rejection
decisions sequentially even though the offers are made simultaneously. One important
reason for the choice of this game instead of an alternative one in which the accep-
tance/rejection decisions are made simultaneously is the issue of multiple equilibria, which
we discuss below. Suppose the acceptance/rejection decisions are made simultaneously.
Note that if the leader makes an arbitrarily small offer € > 0 to ¢+ 1 members, then it is an
equilibrium for each member to accept since no one is pivotal. This equilibrium relies on a
kind of mis-coordination on the part of the members; and since its existence is independent
of the preferences of the players, it can lead to highly inefficient outcomes. On the other
hand, it is also an equilibrium in which every member who has received an offer says no.
There are various ways to deal with this multiple-equilibria problem. In Genicot and Ray
[2006], for example, they impose a refinement to rule out members’ mis-coordination. In-
stead of imposing a similar refinement, when the members acceptance/rejection decisions

are made sequentially, their mis-coordination is eliminated.

6.2.2 General timing: simultaneous offers allowed

We now enrich the model such that in each period, the leader can make simultaneous
offers to a subset of members who have not been approached before, or initiate a vote, or
stop. If the leader makes simultaneous offers to a subset of members, these members then
sequentially decide, in some predetermined order, whether to accept or reject the offers.

A complete analysis of this game is beyond the scope of our paper, but we provide some

20When the offers are made simultaneously, the difference between sunk and non-sunk cost disappears and
hence the conditions for policy passing and the set of members who receive positive transfers in equilibrium
are identical. Details of the results for the case of up-front payment when the offers must be simultaneous are
available upon request.
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ideas as to how to extend the techniques developed here.

We analyze the case when the offers are transfer promises in what follows. As before,
a state is (9,r,t), where S is the set of members who have not been approached by the
leader, r is the number of votes still needed for the policy to pass and t is the sum of the
promised transfers to the members who have already been approached by the leader and
accepted the offers. If in the current period, X C S members are approached and XCcXx
accept the offers, whose sum is £, then the state transitions to (S'\ X, r — | X|,t + {).

We first show that when simultaneous offers are allowed, the condition for the policy

passing in equilibrium that we established in Proposition 1 remains the same.

Proposition 9. Suppose the leader offers transfer promises with simultaneous offers al-
lowed. Consider a subgame T'(S,r,t) where r < |S|. In any equilibrium, (a) if y —t >

Zjesr xj, the policy passes, and (b) if y —t < ZjeST xj, the policy does not pass.

To determine the optimal sequence in which the leader should approach the members
now that simultaneous offers are allowed, we adapt the notion of (in)dispensability of an

individual member defined before to joint (in)dispensability of a set of members.

Definition 4. In the transfer-promise game when simultaneous offers are allowed, con-
sider state (S,r,t) where r < |S|. (a) A subset of members M C S is jointly indispensable
in (8,7, 0) if [S\M[ <7 orif} corxj <y—t <3 ics\myTj- (b) A subset of members
M C S is jointly dispensable in (S,r,t) if [S\ M| 21 andy —t > 3" o\ ary -

Intuitively, a subset of members is jointly indispensable in a state if the policy does not
pass in equilibrium without the leader securing any member’s vote in that state whereas a
subset of members is jointly dispensable in a state if the policy still passes in equilibrium
even without the leader securing any member’s vote in that state.

A subset of members’ strategic position is stronger when it is indispensable than when
it is dispensable. When a subset is indispensable, each member 7 accepts the leader’s offer
only if it at least compensates for his loss x; since by rejecting the offer, the policy will fail
to pass. When a subset is dispensable, however, each member anticipates that the policy

still passes even if he rejects the offer.
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Proposition 10. In the transfer-promise game with simultaneous offers allowed, if the q
lowest members are jointly dispensable at the beginning of the game, then in equilibrium
the leader approaches them in the first period, making each of them an offer of (1 — 0)x;,

and these offers are accepted.

Proposition 10 highlights a significant difference between our paper and Genicot and
Ray [2006]. In Genicot and Ray [2006], the exploitation phase must proceed sequentially,
an implication of their assumptions on payoffs: specifically, that the agents’ reservation
payoffs are strictly increasing in the number of “free agents,” that is, agents who have
not accepted the principal’s offers. In our model, in contrast, the exploitation phase may
take place in just one shot, provided that the lowest ¢ members are jointly dispensable,
which happens if the leader’s gain from the policy is sufficiently high and the number of
votes needed is below majority. (The conditions are less stringent for simultaneous, not

necessarily one-shot, approaching of members to arise in our model.)

6.3 Preferences for casting votes

We relax the assumption that members care only about the outcome of the policy and
incorporate preferences for how they cast their votes. Suppose each member incurs a loss
of ¢ from the action of casting a vote in support of the policy, then our results regarding
who to approach and how much to offer would go through with the modification that the
leader has to add ¢ to each offer compensate for the member’s loss. If the members incur
heterogeneous losses from the action of casting a supportive vote, then there would be

new trade-offs for the leader in terms of who to approach and what offers to make.

6.4 Other extensions for future work

Several extensions discussed above invite intriguing questions that need more developed
analysis to be fully addressed, as we have already pointed out. We conclude our paper by
discussing a few other promising directions for future work.

We have assumed complete information in our framework. While this is a good ap-

27



proximation in certain scenarios, for example, in the case of congressional whips buying
the votes of their party members, it may be less realistic in others contexts. There have
been some attempts in the literature at incorporating incomplete information into multi-
dimensional legislative bargaining,?! but work remains to be done to address questions
such as those put forward in our paper.

While a single vote buyer is appropriate for many applications, it would be interesting
to investigate the implications of competition. New questions arise in the presence of
competition too. For example, does competition increase or decrease the cost of vote
buying? Who benefit most from competition? What happens to social welfare?

Even though we have framed our model in the political economy context, it has ap-
plications in industrial organization and corporate finance as well. Specifically, it can
be adapted to understand issues in exclusionary contracts or corporate takeovers with

heterogeneous buyers or shareholders.??

7 Appendix

7.1 Proof of Proposition 1

Fix state (S, r,t). We first prove part (a). Assume y —1 > >, ¢ ;. Suppose, towards
a contradiction, that there exists an equilibrium in I'(S, r, t) in which the policy does not
pass. The leader’s payoff in this equilibrium is 0. We next show that the leader has a
strictly profitable deviation. Note that it is optimal for any member ¢ to accept an offer
greater than x;. Consider the strategy of approaching members in S in a descending order,
starting with the member with the largest index in S” first, offering zero transfer to the
first | S| — r members (no matter what the history is) and then offering x; + & to each of
the remaining » member (no matter what the history is). Since the last » members accept
the offers, policy passes and the leader’s payoff is y — ¢ — ZjEST xj—re >0fore >0
sufficiently low. Hence, the leader has a profitable deviation, a contradiction.

We next prove part (b) by induction. Assume y —t < > ;g x;. First consider
|S| = r. Suppose, towards a contradiction, that there exists an equilibrium in which
the policy passes. Since |S| = r, each member i € S accepts the leader’s offer in this
equilibrium. Since any member ¢’s rejection leads to the failure of the policy passing, the
equilibrium payoff of any member ¢ € S is nonnegative. Hence, the leader must offer each

21Gee, for example, Chen and Eraslan [2013, 2014].
22Gee Whinston [2006] for a discussion on the importance of incorporating heterogenous buyers in vertical
contracts in antitrust economics, for example.
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member 7 at least z;, which implies that the leader’s payoff in this equilibrium is no higher
than y —t — jes i <0. Since the leader receives a payoff of 0 if she stops immediately
in I'(S, 7, t), it follows that she has a strictly profitable deviation, a contradiction. Hence,
the policy doe not pass in any equilibrium.

Next, suppose that part (b) holds for |S| —r < k where 0 < k < |S|. We prove that
it also holds for |S| — r = k 4+ 1. Suppose, towards a contradiction, that there exists
an equilibrium in I'(S,7,¢) in which the policy passes. Suppose in this equilibrium, the
leader approaches member i in the first period of I'(S,r,t). Note that given the induction
hypothesis, if member ¢ rejects the leader’s offer, then the policy does not pass in any
equilibrium in the resulting subgame I'(S_;, 7, ) since y — t < Zjesri xj. Given that the
policy passes in equilibrium in I'(S,r, t), the transfer ¢; offered to ¢ has to be such that
0"(—x; +t;) > 0, that is, t; > x;. Note that in the subgame that follows member i’s
acceptance, I'(S;,r — 1,t +t;), we have y —t —t; <y —t — ;. Since y —t < ZjeST xj,
it follows that y —t — x; < Zjeszl x; and therefore y —t — t; < Zjeszl zj. By the
induction hypothesis, the policy does not pass in any equilibrium in I'(S_;,r — 1, + ¢;),
a contradiction. Hence, part (b) holds. [ |

7.2 Proof of Proposition 2

Given a set of members S, let (i)s be the member with the ith lowest loss among members
in S, that is, x4 < #(;41)s- We prove the following lemma. Also, let S™ denote the set
of members in S with the r lowest losses.

Lemma 3. In the transfer-promise game, consider subgame T'(S,r,t) with r < |S| and
y—1t > Zjes"" zj. There exists 6 < 1 such that for § > &, the following results hold
generically:

(a) In any equilibrium, only r members are approached and each accepts the leader’s offer.
(b) Suppose the leader offer t; to member i € S in state (S,r,t). If member i is indis-
pensable, then his equilibrium strategy is to accept t; if and only if t; > x;; if member i is
dispensable, then his equilibrium strategy is to accept t; if and only if t; > (1 — 0)x;.

(c) If y—t > Z;;} T(jys +T(r41)gs then (i) there exists an equilibrium in which the leader
approaches i € S" in descending order; (ii) in any equilibrium, the leader approaches
member i € S” and offers t; = (1 — )z, .

(d) Ify—t < Z;;% Tj(5) + ZT(r41)g, then (i) there exists an equilibrium in which the leader
first approaches member (r + 1)g and then approaches i € S™=1 in descending order; (ii)
in any equilibrium, the leader first approaches member (r + 1)s and offer (1 — §)x(,41)4
and then approaches member i € S"™~! and offers t; = (1 — §)x;.

We prove the lemma by induction.

First step: we show that the results hold for |S| = 2, » = 1 and any ¢. Suppose the
leader offer t; to member ¢ € S. If ¢ is dispensable, then his payoff equals t; — x; by
accepting the offer and his payoff equals —dx; by rejecting the offer since by Proposition
1 the policy passes in the subgame following the rejection. Hence, he accepts the offer if
and only if t; — z; > —dx;, that is, t; > (1 — 0)x;. If i is indispensable, then his payoff
equals t; — x; by accepting the offer and his payoff equals 0 by rejecting the offer since by
Proposition 1 the policy does not passe in the subgame following the rejection. Hence, he
accepts the offer if and only if ¢; > x;. So part (b) holds.
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Now we turn to part (c). Suppose y —t > x(9)y, which implies that member (1)g is
dispensable in state (S,7,t). By part (b), he accepts 7 if and only if 7 > (1 — §)z ().
Since (1 — §)z (1), is the lowest payment the leader has to make for the policy to pass, it
follows that in the unique equilibrium, the leader offers 7 = (1 — )z (1), to member (1)g,
which is accepted and the policy passes.

Now we turn to part (d). Suppose y —t < x(z)y, which implies that member (1)s is
indispensable in state (S,r,t). By part (b), he accepts 7 if and only if 7 > z(;),. But
since y —t > x(;), member (2)s is dispensable in state (S,7,t) and therefore accepts 7 if
and only if 7 > (1 — 0)x(9),. For d sufficiently high, we have (1 — 6)x ()4 < (1)s- Hence,
(1—19)x(9)4 is the lowest payment the leader has to make for the policy to pass, it follows
that in the unique equilibrium, the leader offers 7 = (1 — 0)x(9), to member (2)g, which
is accepted and the policy passes. Note that no matter y —¢ > x(9), or y —t < x(9), only
one member is approached and he accepts the leader’s offer. Hence part (a) holds.

Second step: we show that for any r < |S| and any ¢, if the results hold for |S| < &,
then they hold for |S| = k + 1. Suppose the leader offer ¢; to member ¢ € S. If i is
dispensable, then his payoff equals (t; — 2;)6"~! by accepting the offer and his payoff
equals —d"x; by rejecting the offer since by Proposition 1 and the induction hypothesis
the policy passes in the subgame following the rejection in r periods. Hence, he accepts
the offer if and only if (t; — 2;)6"' > —0"x;, that is, t; > (1 — &)x;. If i is indispensable,
then his payoff equals t; — z; by accepting the offer and his payoff equals 0 by rejecting
the offer since by Proposition 1 the policy does not passe in the subgame following the
rejection. Hence, he accepts the offer if and only if ¢; > z;. So part (b) holds.

We next turn to part (c). Suppose y —t > Z;;% T(j)g + T(r41)g, Which implies that
member (r)g is dispensable in state (S,r,t). By part (b), he accepts 7 if and only if
7 > (1=08)z () Note that if ¢ sufficiently high, then in state (S_,, ¢+ (1 —6)z (g, 7 — 1),
that is, the state after the leader secures the vote of member (r)g by making the transfer
promise (1 — §)z(,)q, member (r — 1)s_, is dispensable. By the induction hypothesis,
in state (S—,,t + (1 — 0)z(,,7 — 1), there exists an equilibrium in which the leader
approaches i € S"~! in descending order, offering each (1 — §)x; and the policy passes.
Since (1—0) ", 2(j)4 is the lowest total offer that the leader has to make for the policy
to pass, it follows that it is an equilibrium for the leader to approach member (r)g in
state (S,r,t) and then approach the members in S_, in descending order, and in any
equilibrium, the leader approaches member i € S™ and offers t; = (1 — §)x;. So part (c)
holds.

Now we turn to part (d). Suppose y —t < Z;;i Tj(s) + T(r41)g, Which implies that
member (r)g is indispensable in state (S,r,t). By part (b), he accepts 7 if and only if
T > Z(;)s- Butsince y —t > 3 . ¢ x;, member (r+ 1)s is dispensable in state (S,r,1)
and therefore accepts 7 if and only if 7 > (1 — 6)x(,41)s. Note that if § sufficiently high,
then in state (S \ {r + 1)s},t + (1 — §)z(41)4,7 — 1), that is, the state after the leader
secures the vote of member (r+1)g by making the offer (1—6)z (11, member (r—1)g is
dispensable. By the induction hypothesis, in state (S\ {r+1)s},t + (1 =)z y1)s, 7 — 1),
there exists an equilibrium in which the leader approaches i € S™~! in descending order,
offering each (1 — d)x;, and the policy passes. Note that for ¢ sufficiently high, we have
(1 = 08)x(r41)s < T(r)g- It follows that (1 — §)[x 41y, + Z;;} T(j)e) is the lowest total
offer the leader has to make for the policy to pass. Hence, it is an equilibrium for the
leader to approach member (r + 1)g in state (S,r,t) and then approach the members in
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S\ {r + 1)s} in descending order, and in any equilibrium, the leader first approaches
member (r + 1)g and then approaches member i € S"~1 and offers t; = (1 — §)xz;. Note
that no matter y — ¢ > Z;;% T(j)g T Trg1)g OT Y — 1 < Z;;i T(j)s T T(r41)g> only 7
members are approached and he accepts the leader’s offer. Hence part (a) holds. |

7.3 Proof of all results in Section 4

The results in Section 4 follow from Lemmas 4, 5, 6, 7 and 8 and from Proposition 11.

Throughout, let DV = {(S,r) € 2V xZ|r < n}, let D = {(S,r) € 2V xZ|S # GA1 <
r < |S}, for any S € 2V \ @, let S’ = S\ {max S}, with the convention that @’ = @, and
let £={>cs2lS € 2N} U {oo}. For any S € 2V \ @, for any k € {1,...,|S|}, let (k)
be the member with the k-th smallest index in S.23 That is, S = {(k)|k € {1,...,]S|}}
and the set of z;s of the members in S is {zlk € {1,...,[5]}}. Because z; < w41
Vi € N\ {n}, we have, VS € 2¥ \ @ and Vk € {1,...,|S| — 1}, 2y < 2(11). Use (k)s
instead of (k) only when the underlying S needs to be made explicit.

Let 6 = max{dg, dp, o}, where

(a) 0, ensures that, for any x € £ such that y —x > 0, y — x — na,(1 — §) > 0, that is

—1— minxell,x<y(yfx)
o= p—AS LA A A

=9

nTn ?
(b) 6, ensures that nx,(1 — &) < x1, that is, o = 1 — oo, and
(c) 6. ensures that, for any z,2/ € L with 2’ < x, 2’ + nz,(1 — §) < z, that is,
5 _ 1 _ minz,z’EL,z’<z($_4E/)
.= .

NTn
Note that because mingez z<y(y —x) > 0, 1 > 0 and ming yrer o< (z — ') > 0, we have
§ < 1.

Define W : DV — R U {oc} as follows. W(S,r) = 0 for any (S,r) € DV \ DY with
r <0, W(S,r) = oo for any (S,7) € DV \ D¢ with r > |S|, and, for any (S,r) € DY,

W(S,r)= mi% max g xj, W((S\ T, r—|T]) . (3)
Te2
JjeT

Define IT: D¢ x R, — R as follows

(S, r,y) = 711212%]26;% sty >W((S\T),r—|T)). (4)
Definition 5. A memberi € S in state (S,r) € DV is

1. dispensable if y > W (S \ {i},r),

2. indispensable if y € (W(S\ {i},r — 1), W(S\ {i},r)),

3. inconsequential if y < W(S\ {i},r —1).

Definition 6. Fiz a profile of strategies and consider the resulting sequence of approached
members. We say a member approached in a state in which he is indispensable is tempted

BFormally, given S € 2V \ @ and k € {1,...,|S|}, (k) is defined recursively as (k) = minS if ¥ = 1 and
(k) = min{S \ U (3)} if k > 2.
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and a member approached in a state in which he is dispensable is exploited. Suppose
any member is tempted before any member is exploited or vice versa. Then the tempted
members form a temptation phase and the exploited members form an exploitation phase.

Lemma 4. Consider state (S,r) € DV.

If (S,r) € DY, then any T that solves (3) satisfies |T| < r.

If[S| > 1, then W(S,1) = z(1) and W(S,[S]) = > ;cq 7;-

W(S,r) € L. If (S,r) € D, then W(S,r) € (0, 00).

W(S,r) >W(S,r—1).

W (S,r) < W(S,r) for any S € 2N such that |S| > |S| and Ta), < Tas Vi€
{1,...,|S]}-

6. If |S| > 1, then W(S,r) > W(S\ {i},r—1) VieS.

7. If (S,7) € DY, then W(S,r) = W(S,r) for any S € 2V such that |S| = |S| and

Guds o e =

i’(z)g = T(j)g Vi € {1, e ,7“}.
8. If (S,r) € DY, then W(S,r) < > =1 ()
9. If (S,7) € DE and r < ‘S‘Tﬂ, then W(S,r) = z(,).
10. If (S,r) € DC and x; = x Vi € S, then W(S,r) = LS\—++1-| T = LISI‘—LT‘—HJ x.

Proof. Part 1: Consider (S,7) € D% and T that solves (3) given (S,r). Suppose, towards
a contradiction, |T| > r. Because r — |T| < 0, we have W((S\ T),r — |T|) = 0 and
hence W (S,7) = > e xj. Now consider T". We have |T"| = |T'| — 1 because [T'| > r and
(S,r) € DY jointly imply T # @. Thus |T'| > r. Hence djer Tj < Xjer i = W(S,r)
and W((S\T"),r —|T'|) =0, a contradiction because T solves (3) given (5, r).

Part 2: It suffices to prove that, for any S € 2V \ @, W(S,1) = z(yy and W (S, |S]) =
> jesTj- To see the latter, consider S € 2N\ @. Because S € 2V \ @, (S,]9|) € DC.
The claim thus follows because the objective function in (3) evaluated at (S,]S|) and
T = S equals ) ;. gz; and evaluated at (5,[5]) and any T' € 25\ S equals co. We
prove the former by induction on |S|. Note that for any S € 2V \ @, (S,1) € DY. That
W(S,1) = a1 for any S € 2V \ @ with |S| =1 follows because W (S, |S|) = > jes @y for
any S € 2\ @ with |S| > 1. Now suppose that W (S, 1) = z(yy for any S € 2V \ @ with
|S| < k, where k > 1. We need to prove that W(S,1) = z(;) for any S € 2V \ & with
|S| = k + 1. To see this, consider T' that solves (3) given (S,r). By Part 1, |T'| € {0,1}.
If |T| = 0, then W(S,1) = W(S',1) = x(1), where the second equality follows from the
induction hypothesis. If |T'| = 1, then, because W ((S\ U)’,1 — |U|) = 0 for any U € 2°
with |[U| =1, we have T' = {min S} as well as W(S5,1) = >, ;.

Part 3: We first prove that W (S, r) € £ for any (S,r) € DV. We proceed by induction
on |S|. That W(S,r) € L for any (S,r) € DV with |S| = 0 follows directly from definition
of W. Now suppose that W(S,r) € L for any (S,7) € DV with |S| < k, where k > 0.
We need to prove that W(S,r) € L for any (S,7) € DV with |S| = k + 1. To see
this, we have either (i) » < 0, in which case W(S,r) = 0 € L, or (ii) r > |S|, in
which case W(S,r) = oo € L, or (iii) r € {1,...,|S|}, in which case, given T that
solves (3) given (S,r), either W (S,r) = Z]ET xj € L, or, by the induction hypothesis,
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W(S,r) =W((S\T),r—|T|) € L. We now prove that W(S,r) < oo for any (S,r) € DC.
This follows because the objective function in (3) evaluated at (S,r) € D% and T = S
equals } .7 x; < co. We now prove that W(S,r) > 0 for any (S5,r) € DY. We proceed
by induction on |S|. That W (S,r) > 0 for any (S,r) € D¢ with |S| = 1 follows because
(S,r) € D¢ and |S| = 1 imply r = 1 and hence, by Part 2, W(S,7) = x(;) > 0 for any
(S,r) € DF with |S| = 1. Now suppose that W (S,r) > 0 for any (S,r) € DY with |S| < k,
where k > 1. We need to prove that W (S,r) > 0 for any (S,r) € D¢ with |S| = k+1. To
see this, consider T' that solves (3) given (S, r). We have either (i) T = &, in which case
W(S,r) = W(S’,r) > 0 either by the induction hypothesis when (S’,r) € D or directly
from definition of W when (S’,r) ¢ D% and hence r > |S’|, or (i4) T # @, in which case
W(S,r) =3 jerzj > 0.

Part 4: We proceed by induction on |S|. That W (S,r) > W(S,r — 1) for any (S,r) €
DV with |S| = 0 follows directly from definition of W. Now suppose that W (S,r) >
W(S,r — 1) for any (S,r) € DV with |S| < k, where & > 0. We need to prove that
W(S,r) > W(S,r — 1) for any (S,r) € DV with |S| = k + 1. To see this, we have either
(¢) < 1, in which case W(S,r) > minL = 0 by Part 3 and W(S,r — 1) = 0, or (i7)
r > [S|, in which case W(S,r) = oo > W(S,r — 1), or (iii) r € {2,...,]S|}, in which
case, given T' that solves (3) given (S,7), W(S,r) = max{} ;. z;, W((S\T)',r—|T|)} >
max{d ez, W(S\T),r —1—|T])} > W(S,r — 1), where the first inequality follows
from the induction hypothesis.

Part 5: We proceed by induction on |S|. That W (S,r) < W(S,r) for any (S,r) € DV
with |S| = 0 and for any S € 2V such that |S| > |S| and Taye < Ty Vi € {1, [S]}
follows because given S = @ and any S € 2V we have either (¢) < 0, in which case
W(S,r) = W(S, r) =0, or (¢) r > 1, in which case W(S,r) = oo > W (S,r). Now
suppose that W(S,r) < W (S,r) for any (S, r) € DV with ]5’| < k, where k > 0, and for
any S € 2V such that \S] > |S| and s < T(i)s Vi € {1,. \S\} We need to prove
that W (S,r) < W(S,r) for any (S,r) € DV with |S| = k + 1 and for any S € 2V such
that |S| > |S| and Tay, < x@ys Vi € {1,...,[S]}. To see this, we have either (i) r <0,
in which case W (S,r) = W(S,r) = 0, or (w) r > |S|, in which case W(S,r) = co >
W(S,r), or (i1z) r € {1,...,|S[}, in which case, given T" that solves (3) given (S,r) and
T ={(k)glk € {1,.... |51}, (k)s € T}, W(S,r) < max{}_; ;&;, W({(S\T),r—=T)} <
max{};cpzj, W((S\T)',r —[T|)} = W(S,r), where the second inequality follows from
the construction of 7" and from the induction hypothesis.

Part 6: Let S* = S\ {min S} for any S € 2V \ @. Note that for any S € 2V with
|S| > 2, (S*) = (5')*. By Part 5, it suffices to prove that W(S,r) > W(S*,r — 1) for
any (S,7) € DV with |S| > 1, which we prove by induction on |S|. That W (S,r) >
W(S*,r — 1) for any (S,r) € DV with |S| = 1 follows either directly from definition of
W when (S,7) & D¢ or from W(S,r) = z(;) > 0 shown in Part 2 and W(S*,r —1) = 0
when (S,7) € D%. Now suppose that W (S,r) > W(S*,r — 1) for any (S,r) € DV
with |S| < k, where & > 1. We need to prove that W(S,r) > W(S*,r — 1) for any
(S,r) € DV with |S| = k + 1. To see this, we have either (i) r < 1, in which case
W(S,r) > min L = 0 by Part 3 and W(S*,r — 1) = 0, or (#4) r > |S|, in which case
W(S,r)=W(S*,r—1) = o0, or (iii) r € {2,...,]S|}, in which case, given T that solves
(3) given (S,7), either (a) minS € T, in which case S\ T = S* \ T* and T* € 2°
and hence W(S,7) = max{d_;cr2;, W((S\ T),r — |T|)} > max{d ;cp. ;5 W((S*\
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T, r—1—|T*)} > W(S*,r — 1), or (b) minS ¢ T and |T| > r — 1, in which case
W((S*\T),r—1—1T|) = 0 and T € 2° and hence W(S,r) = max{zjeij,W((S\
T, r =T} 2 Xjer vj = max{d_jep xj, W((S\T),r = 1=[T[)} = W(5*,r—1), or (¢)
min S ¢ T and |T| < r —2, in which case |T'| < |S| -2, (S\T)* = S*\T and T € 2% and
hence W(S,r) = max{} ;. z;, W((S\T)',r—[T|)} > max{d_;crz;, W((S\T)')*,r—1—
TN} = max{>_;crz;, W((S*\T)',r—1-|T|)} > W(S*,r — 1), where the first inequality
follows from the induction hypothesis.

Part 7: We proceed by induction on |S|. That W (S,r) = W (S,r) for any (S,r) € D¢
with |S| = 1 and for any S € 2V such that |S| = |S| and L), = ¥(is Vi € {1,...,r}
follows because, as shown in Part 2, W(S,1) = z(), for any S € 2N\ @. Now suppose
that W (S,r) = W(S r) for any (S,7) € DY with |S| < k, where k > 1, and for any
S e 2V such that |S| = |S| and T(), = T@s Vi € {1,...,r}. We need to prove that
W(S,r) = W(S,r) for any (S,r) € DG with |S| = k + 1 and for any S € 2V such
that |S| = |S| and T(), = ¥(i)s Vi € {1,...,7}. To see this, we have either (i) r = 1,
in which case W(S,r) = zq)y = &), = W (S,r) by Part 2, or (ii) r = |S|, in which
case W(S,r) = > icq®j = dest = W(S,r) by Part 2, or (iii) r € {2,...,|S] — 1},
in which case, given T that solves (3) given (S,r), either (a) |T| = 0, in which case
W(S,r) = W(S',r) = W(S',r) > W(S,r), where the second equality follows from the
induction hypothesis, or (b) [T'| = r, in which case T = {(k)s|k € {1,...,7}} because
W((S\T),r —|T|) = 0 and thus W(S,7) =377, x5 = >_j—; Ty, = W(S,r), or (c)
IT| € {1,...,7 — 1}, in which case, given T = {(B)glk € {1,...,r}, (k)s € T}, W(S,r) =
max{;cpzj, W((S\T),r—|T|)} = max{}_ 7 &;, W((S\T)',r—[T|)} = W(S,r), where
the second equality follows because, as we show below, it is without loss of generality to
assume that 7' C {(k)s[k € {1,...,7}}, and hence we have } ;- x; = >, 5 &; as well as
((S\T),r—|T|) € D implied by \T| e{l,...,r—1}andr < [S|—1, [(S\T)'| = |(S\T)|
and ) g 0 = L) (E\dy VZA' € {1,...,r — |T|} and thus, by the induction hypothesis,
W((S\T),r—|T]) = W((S\ T),r— \T|) All three subcases of the (iii) case show that
W (S,r) > W(S,r). Swapping .S and S in the argument shows that W(S,r) > W (S,r)
and hence that W (S,r) = W(S,r).

What remains is to show that if T" solves (3) given (S, r) with |S| = k+1, where k > 1,
andr € {2,...,|S|—1}and if |T| € {1,...,r—1}, then there exists another solution of (3),
T., such that T, C {(k)s|k € {1,...,r}} and |T,| = |T|. To see this, let T, = {(k)g|k €
{17 o .,T‘}, (k)S € T}v Try1 = {(k‘)s\k‘ € {T +1,..., |S|}a (k‘)s € T}v Ur = {(k)5|k €
{1,...,r},(k)s € S\ T} and Uyy1 = {(k)s|k € {r+1,...,]5|}, (k)s € S\ T}. Note that
because T € 2°, S = T,UT, 1 UU,UU, 1. If | T}, 1| = 0 the claim follows by setting T, = T..
Hence, suppose that |T,41| > 1. Because |T'| = |T,| + |T;+1| and |T;| + |U,| = r, we have
|Uy| = r —|T| + |T+1] and hence there exists a partition of U, into Us and U,, such that
|Us| =r—|T| > 1, |Up| = |Tr+1] > 1 and i < j for any i € U and j € Up,. Now construct
To, =T, UU,,. By construction T, C {(k)g|k € {1,...,r}} and |T,| = |T|. Moreover, we
have max{>_ ;. 2;, W((S\T)',r — [T|)} > max{d_;cp, xj, W((S\ Tu)",r — |Ta])}, where
the inequality follows from ZJET xj > ZjeTa xj, which holds because T' = T, U T;41,
To =T,UUy, and U, C U,, and from W((S\T)",r —|T|) = W((S\ T.),r — |T,|), which
holds by the induction hypothesis because ((S\T),r—|T|) € D¢, S\T = UsUU,, UU, 1,
S\Ty =UsUT, 41 UUpy1, |Un| = |Try1l, i < j for any i € Us and j € Uy, UUp1 U T4
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and |Ug| =r — |T| =r — |Tq].

Part 8: We proceed by induction on [S|. That W(S,r) <>7%_, z(;) for any (S,7) € D¢
with |S| = 1 follows because, as shown in Part 2, W(S,r) =z for any (S,r) € DY with
|S| = 1. Now suppose that W(S,r) < >7%_, x(;) for any (S,r) € DY with |S| < k, where
k > 1. We need to prove that W (S,r) < >°%_, x(;) for any (S,r) € DY with |S| =k + 1.
To see this, we have either (i) r = |S], in Wthh case W(S,r) = > cqx; by Part 2, or (i)
7 < |S], in which case W(S,r) < W(S',r) < 377_; 2(;), where the inequality follows from
the induction hypothesis.

Part 9: We proceed by induction on r. That W (S,r) = z(, for any (S,7) € DY with

r < |S|T+1 and with » = 1 follows from Part 2. Now suppose that W (S,r) = z(,) for

any (S,r) € DY with r < |S|T+1 and with r < k, where & > 1. We need to prove that
W(S,r) = z( for any (S5,r) € DY with r < |S|+1 and with » = k+41. To see this, consider
(S,r) € DY with r < |S|T+1 and with r = k+ 1. We claim that 7' = {min S} solves (3) and
thus W(S,r) = max{z), W((S \ {minS})’,r — 1)} = max{x(),z()} = 2(,), where the
second equality follows from the induction hypothesis. To see that max{} ;. z;, W((S'\
T),r —|T)} = x(y for any T € 25, given T € 2° we have either (i) |T| > r, in which
case Y ier@j > (), or (ii) |[T| = 0, in which case, because r > 2 implies |[S| > 3
and hence S’ \ {min S} = (S \ {min S})’, we have W((S\ T)',r — |T|) = W(S',r) >
WS\ {min S},r — 1) = W((S \ {min S})’,r — 1) = x(,, where the inequality follows
from Part 6, or (ii¢) |T| € {1,...,r — 1}, in which case either (a) (k) € T for some
k€ {r,...,|S[}, in which case Y ;.rzj > z(), or (b) (k) ¢ T Vk € {r,...,[S]}, in
which case W((S\ T)',r — |T|) = x(), where the equality follows from the induction
hypothesis, which we can invoke because for any T € 2% with |T| € {1,...,r — 1},
we have ((S\ T),r — |T|) € D% and r — |T| < W The former follows from
[(S\T)|=|S|—1—|T|>(2r—1)—1—|T| >r—|T| > 1, where the second inequality
uses 7 = k+1 > 2. The latter is equivalent to 7+ = |T| < ‘S‘H and follows from |T| > 1.

Part 10: We first prove that for any (S,7) € DY, we have {7‘&;“} = Lilsl‘—ilﬂj' To

see this, (S,7) € DY implies |S| > 1 and r € {1,...,]S|}. Thus [S| —7+1 > 1 and

0 < E T'r—l—l < |S||S|+1. It thus suffices to prove that there exists unique m € N such

that |S| T <m < g ||S|+1 To see that m exists, if ST=r¥T m—— ¢ N, then for the smallest

integer larger than |S|7T+1, m’, we have m =m/, where i € {1,...,]S| —r}. Thus
S| IS]=r—i

/ o N
ST=r¥T = 5=rF1 T > m/. That m is unique follows from BT~ B < 1.

We now prove that if (S,7) € D¢ and z; = 2 Vi € S, then W(S,r) =

LISI‘#HJ x. We proceed by induction on |S| — r. Suppose z; = x Vi € S. That
W(S,r) = [|S|f++1—‘ x = LS\LL’!HJ x for any (S,r) € DY with |S| —r = 0 follows

because, by Part 2, W(S,[S]) = > ;cgx; for any S € 2N\ @. Now suppose that

W(S,r) = {m] r = LSH QHJ x for any (S,7) € DS with |S| — r < k, where k > 0.
We need to prove that W(S,r) = [‘3‘7%1 x {ISI|S1!+1J x for any (S,7) € D¢ with

|S|—r = k+1. To see this, because x; = x Vi € S and by Part 1, (3) simplifies to W (S, r) =
minge g,y max{tz, W(U; ‘S‘ - 1{2} r—t)} = rmingy, . ;) max{t, (lsl 1}, where the
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second equality follows from the induction hypothesis when r — ¢ > 1 and directly from
definition of W when r—# = 0. It thus suffices to prove that min,c g . max{t, (@%}} =

[rsr] = Ligrr
|S|—r+1 |S|—r+1
t*, where t* € N is the largest solution to the problem. In order to derive t* we need to con-

sider two cases: either ¢t = “g_jA for some ¢t € {0,...,r} or t # (lgl_j 1 vte{o,...,r}.

|- The structure of the problem implies that min,¢y, . 4 max{t, [‘g‘%'ﬂ} =

r

In the former case t* = [I=1] = =P+ where i € {0,...,]S| — r — 1}, and thus
, |S]—r |S]—r
= \S\T;ZH = [‘S|_’“T+J, where the second equality follows from ¢* € Nand i < |S|—r—1.
—t* S S
In the latter case t* = |7:S'|ir + 1, and thus t* = |S||—7~|+1 = L|S\|—r|+1J' [ |

Lemma 5. Consider state (S,r) € D% and y > 0.

(4) has a solution. |T| < r for any T that solves (4).

If r =8|, then T'= S is the unique solution to (4).

If y > W(S,r), then y — II(S,r,y) > 0.

If y > W(S’,r), then T = & is the unique solution to (4).

If y <W(S',r), then T # & for any T that solves (4).

Ifr <|S| and y > >7%_, x(;), then T = & is the unique solution to (4).
Ifr < |S|T+1 and y > x (), then T = @ is the unique solution to (4).

Ifx #y for any v,y € {3 craj|T € 2N} then (4) has a unique solution.

Ifr <|S|, then Vi € {r+1,...,|S|}, if vy < 2(;), then (i) ¢ T for any T that solves
(4).

Proof. Fix (S,7) € DY and y > 0 throughout. Part 1: (4) has a solution because 2° is a
finite set and any 7' € 2° such that |T| = r is admissible in (4) because W ((S\T),r—|T|) =
0. To see that |T'| < r for any T" that solves (4), consider 1" that solves (4) and suppose,
towards a contradiction, that |T'| > r. When r = |S|, we have |T'| > |S|, a contradiction
to T € 25. When r < |S|, consider any T, C T such that |T,| = r. Because |T| > r, such
T, exists. We have T, € 25, djer®i > D ier, v and W((S\Ty)',r — |Tq]) = 0, which is
a contradiction because T solves (4).

Part 2: Because r = |S| we have, for any T € 25\ S, |(S\T)| = |S| - |T| -1 =
r—|T|—1>r—|T| > 1 and hence W((S\ T),r —|T|) = oco. For T = S, we have
W({(S\T),r—|T|) =W(2,0) =0 and hence S is the unique solution to (4).

Part 3: When r = [S], we have W(S,r) =3, ¢ 2; by Lemma 4 part 2 and II(S, r, y) =
> jes Tj by Part 2. When r < [S], consider T" € 29 that solves (3) given (S, 7). Because
y > W(S,r) =max{d_ ;crz;, W(S\T),r —[T])}, we have y > W((S\T),r — |T|) and
y > ZJET zj. The former inequality implies II(S,7,y) < ZjeT x; and hence the latter
inequality implies y > II(S, r,y).

Parts 4 and 5: T = @ solves (4) when y > W (S’,r) because W((S\T),r — |T|) =
W(S',r) when T' = & and is the unique solution because » .7 x; > 0 for any T, € 29\ @.
T # @ for any T that solves (4) when y < W(S’,r) because T' = & is not admissible in
(4) when y < W(S',r).

© RS G o e =
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Part 6: Suppose r < [S| and y > >7%_; 2(;). Because r < [S|, we have r < |5’ and
thus (S’,7) € D¥. Hence, by Lemma 4 part 8, > iz = W(S',r). Thus y > W(S',7)
and hence, by Part 4, T = & is the unique solution to (4).

Part 7: Suppose r < MTH and y > x(,). Because r < ‘S‘TH, we have r < @ and thus,
by Lemma 4 part 9, W(S,r) = W(S',r) = 2(). Thus y > W (S’,r) and hence, by Part 4,
T = & is the unique solution to (4).

Part 8: Suppose, towards a contradiction, that T, and T} are two distinct solutions to
(4). Because x # y for any z,y € {>_ ;cpx;|T € 2Ny, T, € 2%, T, € 25 and S C N, we
have > .cr. xj # > icr, ¥, a contradiction.

Part 9: Suppose r < |S| and consider T that solves (4). Suppose, towards a contra-
diction, that for some i € {r +1,...,[S|} we have z(,y < x(; and (i) € T. Note that
|T| < r from Part 1 and r < |S| imply S\ T # @. There are two cases to consider. In
each case we construct T, € 2% such that Y jer i > D jer, i and W((S\T),r —|T|) =
W((S\T,),r — |Ta|) establishing a contradiction to T" solving (4).

Case 1: max S\ T < (r). Because max S\ T < (r), we have max S\ 7T < (r) < (i) and
hence Tax s\7 < Ty < (). Let T, = (T U {max S\ T}) \ {(i)} € 25. By construction,
S e > Syep, . Moreover, [T] = [Tu| and (S\T,) = ((S\T)\{max S\THU{(7)}) =
(S\T) and hence W((S\T),r —|T|) = W({(S\T.),r — |T.])-

Case 2: max S\ T > (r). When |T| =r, T, = {(k)s|k € {1,...,r}} has the desired
properties. When |T| € {1,...,r — 1}, let T, = {(k)slk € {1,...,7},(k)s € T} and
U. = {(k)s|k € {1,...,r},(k)s € S\ T}. By construction, |T,| 4+ |U,| = r. Moreover,
because (i) € T and ¢ > r+ 1, |T| > |T;| + 1 and hence |U,| = r —|T,| > r — |T| + 1.
Thus, there exists a partition of U, into Us and U, such that |Us| = r — |T| > 1,
|Upn| > 1 and z; < ;s for any j € U and j' € Upy,. Let T, = (T'U {i'}) \ {()} for
some i’ € Uy,. By construction, T, € 2°. Moreover, because Ty > 2y and (r) > 7', we
have ;) > @() > @y and thus > ;cpxj > > icp x;. Finally, (S\T),r —[T) € DE,
S\T =UsUU, UZU{max S\ T}, S\ T, =UsU (U \{i'})UZU{max S\ T, (i)}, j <j
for any j € Us and j' € U, UZ U {max S\ T, (i)} and |Us| =r — |T| = r — |T,| and thus,
by Lemma 4 part 7, W((S\T),r — |T|) = W({(S\ T.),r — |T4]). [ ]

Lemma 6. Consider state (S,r) € D¢ and y > 0.
1. TI(S,r,y) > TI(S,r — 1,y) if r > 2.
2. TI(S,r,y) > T1(S,r,y) for any S € 2V such that |S| > |S| and Ty, < a
{1,...,|S]}.
3. TM(S,r,y) > (S \ {i},r — 1,y) for any i € S if r > 2.
4. (S, ry) 2 (S, my) if y' >y

i)s Vi €

Proof. Fix (S,7) € D% and y > 0 throughout. Consider T that solves (4). We have
y>W({(S\T),r—|T]|). Part 1: From Lemma 4 part 4, we have W((S\ T)',r — |T|) >
W((S\T)',r —1—|T|) and hence y > W((S\T),r —1—|T|). Because (S, — 1) € DY,
IS, r,y) > (S, r — 1,y).

Part 2: Consider S € 2V such that |S| > |S| and Ty, < @)s Vi € {1,...,|S]}. Let
T = {(k)glk € {1,...,|S|},(k)s € T} € 25 From Lemma 4 part 5, we have W((S \
TY,r—|T]) > W((S\T),r—|T|) and hence y > W((S\T),r — |T|). Moreover, because

37



IS

(g < T(i)s Vi € {1,...,[S[}, we have } . cpx; = 3. 7. Because (S,7) € DY,
I(S,r,y) > TI(S,r,y).

Part 3: Consider i € S. We have either i € Tori ¢ T. When i € T, set T, = T'\ {i} €
29\ We have |T| = |T,| + 1 and S\ T = (S \ {i}) \ T,. Thus W((S\T),r — |T|) =
W(((S\{i})\Tn)',7 —1—|T,|) and hence y > W(((S\{i})\Tn)’,r — 1 —|Tg|). Moreover,
djer®i = D jer, Tj- Because (S\ {i},r — 1) € DE TI(S,r,y) > T(S\ {i},r — 1,y).
When i ¢ T, we have either [S\T| =1 or |S\T| > 2. In the former case TU {i} = S
so that (S\T) = ((S\{i})\T) = @ and Lemma 4 part 4 imply W((S\T),r — |T|) =
W(((S\{i})\T),r—1—1T|) and hence y > W(((S\{i})\T)',7—1—1|T|). In the latter case
either (S\{iH)\T) = (S\T)" \ {max(S\T)'} when i =maxS\T or (S\{i})\T) =
(S\T)" \ {i} when i < maxS \ 7T and Lemma 4 part 6 imply W((S\ T)',r — |T|) >
W(((S\{i}))\T),r —1—1T]) and hence y > W(((S\ {i})\T),r — 1 —|T|). Moreover,
because i ¢ T, T € 25\, Because (S\ {i},r — 1) € DY, TI(S,r,y) > (S \ {i},r — 1,9).

Part 4: We have y/ > W((S\T)',r—|T|) because y' > y. Thus II(S,r,y) > II(S,r, ).

|

Lemma 7. Ifi € S is dispensable at (S,r) € DV, then any j € S with j > i is dispensable
at (S,r). Ifi € S is dispensable at (S,7) € DV, then, ¥j € S\ {i}, i is dispensable at
(S\{j},m—1) and j is dispensable at (S \ {i},r —1).

Proof. To prove the first sentence, using Definition 5, it suffices to prove that, for any
i,j7 € S with j >4, if y > W(S\ {i},r), then y > W(S\ {j},r), which holds because, by
Lemma 4 part 5, we have W (S\{i},r) > W(S\{j},r). To prove the second sentence, using
Definition 5, it suffices to prove that, for any i,j € S with j # 4, if y > W(S\ {i},r), then
y > W(S\{i,j},r—1), which holds because, by Lemma 4 part 6, we have W (S\ {i},r) >
W(S\{i,j},r—1). [ |

Lemma 8. Consider state (S,r) € DC.

YjesTi
1. W(S,r) < |S‘\7Ef+i'

2. Suppose x(;y = a fori € {1,...,na}, Ty = b fori € {ng+1,...,n4 +np}, where
a,b > 0, ng,mp € {0,...,|S|}, ng +np = |S| and b > 2|S|la. Let L;p(z) = 1
ifx € Z or x < 0 and L(x) = 0 otherwise. Then W(S,r) = b[m] +

[S|—r+1
na—|S| r [ no=(S|=7)
a <[|S|—r+1—| + [|S\—r+1—|> Lin ( l|)S|—7“+1 )

Proof. Part 1: Consider (S,r) € DE. We proceed by induction on |S|—r. That W (S,r) <

%{ffﬁ for any (S,7) € D¢ with |S| — r = 0 follows from Lemma 4 part 2. Now suppose

that W (S,r) < \Z;ffffi for any (S,r) € D with |S| — r = k, where k > 0. We need to

prove that W (S,r) < %‘Jffﬁ for any (S,r) € D with |S| —r = k+ 1. Proof of this claim

uses the following lemma.

Lemma 9. Given n > 2 and r € {1,...,n — 1}, for any (z1,...,2,) € R}, such that
Yoz =c>0 and x; < xip1 for any i € {1,...,n — 1}, a partition of {1,...,n — 1}

into two subsets A and B exists such that ), 4 x; < n%r-l—lc and ) ep i < FEIHC
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Proof. Fixn >2,r e {l,...,n—1}, x € R} such that > j2; =¢ >0 and x; < Tit
Vi € {1 ,n—1}. Let s be the largest integer such that > | »; < .—+5. Because

x1 < & g — r+1’821’ andbecausezgl:lxi:c>H%H,s<n—1 Let A={1,...,s}
and B = {s+1,...,n — 1}. By construction ) ;4 z; < — T_HC It thus suffices to prove
that > ,cpa; < n’i;j;lc. If B = @, this is immediate. If B # @&, suppose, towards a

contradiction, that ) . pz; = E?_SI_H x; > = "¢ Because B # 9, we have s<n-—2

and hence, by definition of s, Zf+11 x; > n—r—i—l c. Thus Zsfll x; + Zl o1 Ti = Toy1 +

Z?:_ll T, > Cc = Ty + Zl 1 ; and hence x541 > x,, which is a contradiction because
s+1<n—1<nimplies r511 < xy. [ |

Because (S,7) € DY and |S| —r =k +1 > 1, we have |S| > 2 and r € {1,...,|S| —
1}. Therefore, by Lemma 9, there exists a partition of S” into sets A and B such that

S|— . . . .
diea®i < IZSIJGf+i and >  pxj < % Because A € 29, (3) implies that

W(S,r) <max{} 2, W((S\ A),r —[A])}. By construction of A and B, > .4 x; <

%fffﬁ Moreover, we have either (i) |A| > r, in which case W((S\ A)',r — |A]) =0, or
(ii) |A| < r —1, in which case ((S\ A)’,r — |A|) € D and (S\A) (BU{maxS}) =B

> jeB® (IS1-r2jes®i 1 _ Cjes®i
and hence W ((S \ A),r — |4]) < (ST=TA= SB(TJ AN S EE rfls - 5= — |S|J,ETS+1]7
where the first inequality follows from the induction hypothesis.

Part 2: Let D = {(nq,np, ) € N2 X Z|n, + np —r > 0} and for any (nq, np,7) € DY,

= —(ng+np—
tot wing,m, ) = B[R] o (Tt |+ T ) Ton (5555
We have the following: (i) for any (ng,np,r) € DY with ng + np — r = 0, w(ng, np,r) =
bny 4+ ang, (it) for any (ng,np,r) € D with n, = 0, because € Z implies that

nb—Tr—i-l
’an_—zz—l—l = [_n:izj-l - nb—rr+1~| = _ﬁ’ w(na,nb,r) = b(ﬁw’ (Z”) for any
(ng,np,r) € DY with n, = 0, because [—n:j:iﬂ = 0, w(ng,np,r) = a(ﬁ}, and

(iv) for any (nq,ny,r) € D with r < 0, because 7 < 0 implies that [— —fe="7] =

[— na+nb el =0 o= r—i-l1 0, w(na, np, ) = 0.
Suppose that z; =a fori € {1,...,n.}, x4y =bfori € {n, +1,...,n, +np}, where

a,b> 0, ng,ny € {0,...,]S|}, ng +np = |S| and b > 2|S|a. We proceed by induction on
|S| — 7. That W(S,r) = w(ng,ny,r) for any (S,7) € D with |S| — r = 0 follows from
property (i) of the w function because, from Lemma 4 part 2, W(S,r) = >_ ;g x; for any
(S,r) € DY with |S| —r = 0.

Now suppose that W(S,r) = w(ng,ny,r) for any (S,7) € D with |S| —r < k,
where k > 0. We need to prove that W(S,r) = w(ng, ny,r) for any (S,r) € D¢ with
|S| —r = k + 1. To see this, consider (S,r) € D¢ with |S| —r = k + 1, where k > 0.
If ng = 0 or ny, = 0, then W(S,r) = w(ng,np,r) by properties (ii) and (iii) of the w
function because, by Lemma 4 part 10, W(S,r) = x[‘s‘ ] for any (S,7) € D¢ with
x; = x Vi € S. Hence, suppose that n, > 1 and n; > 1.

We first claim that (3) given (S,r) admits solution T" with [{i € T'|z; = b}| < np — 1.
Suppose that T solves (3) given (S,r) and that |[{i € T|x; = b}| = ny. By Lemma 4
part 1, |T| < r < |S| — 1 and hence |S \ T| > 1 so that, because |{i € T|x; = b}| = ny,
Tmax s\ = a@. Let i, € T be such that z;, = b. Now consider T, = (T'\ {4p}) U{max S\ T'}.
By construction > x5 > > cq, . Moreover, |T'| = |Tp| and (S\T)" = (S\ 1)’ and
thus W((S\T),r—1|T|) = W((S\Tp)',r —|Tp|) and thus T}, solves (3) given (S,r). Hence,

r+1
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adding an additional constraint |{i € T'|z; = b}| < mny, — 1 to the optimization problem in
(3) does not change the value of the problem.

Second, by Lemma 4 part 5, the value of the objective function of the optimization
problem in (3) evaluated at any two Ty,T» € 2° such that |{i € Ty|z; = a}| = |{i €
Tolz; = a}| and |{i € Ti|z; = b}| = |[{i € Ta|z; = b}| is the same. The optimization
problem in (3) is thus equivalent to

o min o Lama -+ by, b 2RO ([ ] ) L
mp € {0,...,np — 1}

(5)
where the second term in the max operator is W((S\T)’,r — |T'|) which, by the induction
hypothesis and property (iv) of the w function, equals w evaluated at (ng —mq, ny —my —
1,r —mg —my).

For a given m, € {0,...,n,} and my € {0,...,n, — 1}, the first term in the max oper-

ator in (5) is at least bmy, and, we claim, the second term is at least b[%} This

follows because "”_mg_(w'_r) =1I ‘g‘l‘ b ¢ 7 implies that [= \s((ibfl)W = st|—75~b + “S\—r—|

r—(mg+m r—ng—m r—nNg—m m ny—1 r—(meg+m
and that [=get)] > [rogme] = St and hence [l + [Tgemel] >

-1+ “S'%T] = 0. Moreover, the first term is at most bm; + a2|S| and the second

term is at most b(%ﬂrs‘_”] + a2|S|. The objective function in (5), for a given

my € {0,...,ny — 1}, thus lies in the following interval
np—myp—(|S|—r np—mp—(|S|—r
[b mac{my, [ U=y masc (i, [ (81T a2|5|] . (6)
np—mp—(|S|=r

Thus, because [WW € Z for any my, € {0,...,n, — 1} and because b > 2|S]a, if
(my, my) solves (5), then mj is a solution to

3 np—mp—(|S|—r)
mbe{(I)?.l.I,lnb—l}bmaX {mbj[ |S]=r ~‘} (7)

We consider the following three cases.
Case 1: ny — (|S] —r) < 0. Because ny — (]S| —r) < 0, my = 0 is the unique solution
to (7) and the value of (7) is bmax{0,0} = 0. Hence m; = 0 for any solution (m},m}) to

(5). Moreover, ny — (|S| —r) < 0 implies that 0 < ny —1 < |S| —r and hence [— g":ﬂ =0.

Thus (m],,0) solves (5) if m/, is the solution to

min amax{ my, | Feiae } 8
i amax {mg, [ ®)

The structure of (8) implies that it admits solution m] = | where m], < n, is

T
Bl
implied by ny — (|S| —r) = r — ng < 0. The value of (8) equals am/, and hence the
value of (5) is am),. What remains is to show that w evaluated at (ng,np,r) such that

— (|S] =) <0 equals a[|5|7++1]. This follows because ny — (|S| — r) < 0 implies that
S|—r)—n n
[ U2 ] = 0 and that [— g = 0.
Case 2: ny, — (|S| —7) > 0 and “ \S\ ‘S‘ ¢ Z. In this case the structure of (7)
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np—(|S]=r)
|S]—r+1

implies that it admits solution m; = [
|S| —r > 1. The value of (7) is bmy. If %ﬂf‘r) ¢ 7Z, then the objective function in
(IS]=r T=m) -1

(5) evaluated at (0,my) equals bmy. If %W € Z, then (%

and hence the objective function in (5) evaluated at (0,m}) equals max{bm, b(m; — 1) +
a( (mbig(lribfl)w + [T;‘Tﬁ 1)} = bmj,, where the equality follows from b > 2|S|a. In either case,
by the arguments leading to (6), (0,mj) solves (5) and its value is bmnj. What remains

is to show that w evaluated at (ng,np,r) such that n, — (|]S| —r) > 0 and " (S1=r) ¢ Z

1, where mj < mp — 1 is implied by

C[S]-r+1
equals b[%} which is immediate.
Case 3: ny — (|S|—r) >0 and W € Z. In this case the structure of (7) implies
that mj = % is the unique solution to (7), where my < n, — 1 is implied by

|S| —r > 1. The value of (7) is bmax{mj, m;} = bm;. Thus (m/,,m;) solves (5) if m/, is
the solution to

min amax {ma, [P + [} = min | ama {ima, [
mq€{0,...,nq mq€{0,...,nq

, .

where the equality follows because we have TSbI_— Zb = —mj — 1, and thus [%] =

r— (ma-l—mb

1 T‘_m, a —_— a a
mg—1+(|5|—_7"]:—mg, and‘s‘i_ﬁ:mZ—I—lST"—_r,andthus[ EEG 1_m2’+[7l\5|f7l‘ 1.
The structure of (9) implies that it admits solution m] =

[‘S‘%H} and its value is
am,,. Hence (m,,m;) solves (5) and its value is bmj + am],. What remains is to show
that w evaluated at (ng,np,r) such that ny — (|S| —r) > 0 and m—US1=1) ¢ 7 equals

[S]—r+1
MWW +al gy |- This follows because % € Z and because (Igtll 5] -] =

= —m;, and [|S|J:rfl—| = “S\ﬁi+1+mﬂ = “sﬂﬁﬁ"‘my u

- S|
e = [—m— et |

Consider the profile x(g,ny) = (z(g,m4)i)ics such that x(e, np) ;) = e fori € {1,...,|S|-
o}, w(e,my) e = S2EE) for e {|S| -y + 1, ,|S|} where ¢ > 0 and ny, = k(|| —

r+1) for some k € {1,.. LISI r+1J} where {1, . L|S\ 7~+1J} # & because ‘S|‘_ST‘+1 > 1.

Then there exists £ > 0 such that, for all € € (0, 5), x(e,np) € RLL and ) ;g x(e,mp); = c.
Moreover, by Lemma 8 part 2, given x(e,np), if (S,7) € D% and r < |S|, we have

_c—e(|S|=np) rre—(S|—7)7 _ c—e(|S|—ny) S|—r _ c—¢e(|S|—nyp)
W(Sr) = S = e b ] = SRS A the same

time Lemma 8 part 1 implies that W (S,r) < ez S| 7 for any profile (z;)ics € R' ‘ such

that ) ;g x; = c¢. The x(e,ny) thus comes arbltrarlly close to the upper bound on W(S, T)
as ¢ — 0.

Proposition 11. Consider a subgame starting with state (S,7) € DY. Suppose y ¢ L
and § > 0.

1. An equilibrium exists. If multiple equilibria exist, then

(a) the leader’s payoff is constant across equilibria, and

(b) for alli e N\ S the payoff of member i is constant across equilibria.

2. If the policy passes in an equilibrium, then
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(a) it passes in r + 1 rounds,

(b) the equilibrium consists of two phases (possibly empty), a temptation phase fol-
lowed by an exploitation phase,

(¢) the set of members included in the temptation phase solves (4), and

(d) if r < |S| and x(,y < x; for some member i € S, then member i is not included
in the temptation phase,

(e) the limit of the leader’s payoff is y — II(S,r,y) as § — 1.
3. If y > W (S,r), then the policy passes in all equilibria.
4. If y <W(S,r), then the policy does not pass in any equilibrium.

5. In an equilibrium, if member i € S is approached in state (S,r), then he accepts
a transfer if and only if it is weakly greater than a cutoff. In state (S,r), if i is
dispensable his cutoff is x;0"(1 —0), if i is indispensable his cutoff is x;0" and if i is
inconsequential his cutoff is 0.

Proof. We prove Proposition 11 by induction on the size of |S|. Before the induction
argument, we deal with several preliminaries. First, we introduce two functions [ and ¢
that define a space of strategies ¥ and during the proof we (inductively) specify the [ and
¢ functions such that a profile o constitutes an equilibrium if and only if ¢ € 3. For any
(S,7) € DV, let (S, r) C {initiate a vote,stop} U (S x R, ) and for any state (S,7) € DV
and any i € S, let ¢(S,r,i) € Ry. Let H = Uyez,r<nH,, where H, is the set of possible
histories in I'(V,7). At any h € H, either the leader moves or h = (hy, (i,t)), that is,
a member i responds to the leader’s offer ¢ made at history h;. In the former case, let
(Sh,r") be the state that corresponds to h. In the latter case, let (S" ") be the state
that corresponds to h;. Let &; be a strategy of the leader that satisfies &;(h) € I(S",r?)
for any h € H at which the leader moves and let ¥; be the space of all &; strategies.
Let 6; be the strategy of member ¢ € N such that, for each history h € H at which the
leader approaches i with an offer ¢, &;(h) = accept if and only if ¢+ > c(S", 7" 4). Let
o = (61,(6i)ien) be a profile of strategies constructed from the [ and ¢ functions and
Y =% X (x;en{0:}) be the space of all & profiles.

States (S,r) € DV with r < 0. For any (S,r) € DV with r < 0 and any i € S,
set 1(S,r) = {initiate a vote} and c(S,r,i) = 0. Fix (S,r) € DV with r < 0. T'(S,7)
admits unique equilibrium in which the principal initiates a vote at any history in which
she moves and any member accepts any transfer at any history in which he moves. Thus,
a profile o constitutes an equilibrium in I'(S, r) if and only if o € ¥ and the equilibrium
payoff from (S, r) is y for the principal and —z; for any member i € N.

States (S,r) € DV with r > |S|. For any (S,r) € DV with r > |S| and any i € S, set
1(S,r) = {initiate a vote, stop}U(S x{0}) and ¢(S, r,i) = 0. Fix (S,7) € DV with r > |S].
In any equilibrium of I'(S,r) the policy does not pass, hence any approached member
accepts any offered transfer and thus the leader never offers strictly positive transfer to
any member. Therefore, a profile o constitutes an equilibrium in I'(S,7) only if o € X.
Moreover, any 6 € ¥ constitutes an equilibrium in I'(S, 7) and thus the equilibrium payoff
from (S, r) is 0 for the leader and for any member i € N.

Initial induction step. We now prove Proposition 11 for any (S,r) € DY with |S| = 1.
Notice that (S,7) € D¢ and |S| = 1 implies r = 1 and thus W (S, r) = II(S,r,y) = T(1)-
For any (S,r) € D% with |S| = 1 and any i € S, set I(S,r) = {(i,z;)} if y > 3,
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1(S,r) = {initiate a vote, stop, (i,0)} if y < x; and ¢(S,r,i) = dz;. Fix (S,7) € DY with
|S| =1 and let S = {i}. In any equilibrium of I'(S, r), if the leader in (S,r) approaches i
with transfer ¢, then i’s payoff from rejection is 0, because the game moves to state (&, 1),
and i’s payoff from accepting is ¢t — dx;, because the game moves to state (&,0). Hence,
if approached in (S,7), i accepts t if and only if ¢ > dz;. Note that i is indispensable in
(S,r) because W (2,0) =0 <y < W(@,1) = oo. For the leader, thus, the payoff in (S, r)
from initiating a vote or stoping is 0 and the payoff from approaching member 7 with an
offer ¢t is 0 if t € [0,0z;) and is dy — t if t > dz;. Hence, the leader in (S,7) approaches
1 with offer dz; if y > x; and either initiates a vote or stops or approaches i with offer
0 if y < z;. Therefore, a profile o constitutes an equilibrium in IT'(S,r) only if o € X.
Moreover, any & € X constitutes an equilibrium in I'(S, r) and thus the equilibrium payoff
from (S, r) is 6(y — z;) for the leader, 0 for member i and —z; for any member j € N\ {i}
if y > x; and is 0 for the leader and for any member j € N if y < x;. Because y ¢ L
and x; € L, we have y # x; and this concludes the proof of Proposition 11 for all states
(S,r) € DY with |S] = 1.

Induction step from k to k+ 1. Assume Proposition 11 holds for all states (S,r) € D
with |S| < k, where k& > 1. We now prove Proposition 11 for any (S,r) € D¢ with
|S| = k + 1. Fix (S,r) € DY with |S| = k + 1.

First, we prove part 5. In any equilibrium of T'(S,7), suppose the leader in (S,r)
approaches ¢ € S with transfer t. Let v, be i’s payoff from accepting and v, be i’s payoff
from rejecting. There are three cases to consider.

Case 1: r =1. If r = 1, we have v, = t — dx;, because the game proceeds to state
(S\{i},7—1), and, by the induction hypothesis, v, = 0if y < W(S\{i},r) and v, = —§2x;
if y > W(S\{i},r). In the former case, i accepts the leader’s offer ¢ if and only if ¢ > dz;
and in the latter case i accepts the leader’s offer ¢ if and only if ¢ > §z;(1 — ). Note that,
because W (S \ {i},r —1) = 0 when r = 1, in the former case ¢ is indispensable in (.S, r)
and in the latter case 7 is dispensable in (S, 7).

Case 2: r = |S|. If r = |S|, we have v, = 0, because the game proceeds to state
(S\{i},r), and, by the induction hypothesis, v, = tify < W(S\{i},r—1) and v, = t—0"x;
if y > W(S\ {i},r —1). In the former case i accepts the leader’s offer ¢ if and only if
t > 0 and in the latter case i accepts the leader’s offer ¢ if and only if ¢ > §"z;. Note that,
because W (S \ {i},r) = oo when r = |5/, in the former case ¢ is inconsequential in (.S, )
and in the latter case 7 is indispensable in (.5, r).

Case 3: r €{2,...,|S|—1}. Because y ¢ L, because W (S\{i},r—1), W(S\{i},r) € £
by Lemma 4 part 3 and because W (S\{:},r—1) < W(S\{i},r) by Lemma 4 part 4, there
are three cases to consider: in (.9, r), i is either inconsequential, when y < W(S\{i},r—1),
or indispensable, when y € (W (S'\ {i},r — 1), W (S \ {i},r)), or dispensable, when y >
W(S\ {i},r). By the induction hypothesis, if 7 is inconsequential we have v, = t and
v, = 0 and ¢ accepts the leader’s offer ¢ if and only if ¢ > 0, if 4 is indispensable we have
ve =t —0"x; and v, = 0 and ¢ accepts the leader’s offer ¢ if and only if ¢ > §"z;, and if ¢
is dispensable we have v, =t — §"z; and v, = —6"1z; and i accepts the leader’s offer ¢ if
and only if ¢ > 6"z;(1 — 6).

For any ¢ € S, set ¢(S,r,i) = 0 if 7 is inconsequential in (S,r), set ¢(S,r,i) = 0"x; if
is indispensable in (S,r) and set ¢(S,r,i) = 0"x;(1 — ¢) if i is dispensable in (S, 7).

We now prove that I'(S,r) admits an equilibrium and that the leader’s payoff is con-
stant across equilibria, parts 1 and la. By construction, a profile o constitutes an equi-
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librium in any proper subgame of I'(S,r) if and only if o € ¥. It thus suffices to prove
that, for any & € X, the leader has an optimal action at the initial history of I'(.S,r)
when her payoff in proper subgames of I'(S, r) is determined by &, and that the payoff the
optimal action provides to the leader is independent of 6. That the payoff the optimal
action provides to the leader is independent of & follows from the induction hypothesis;
the leader’s payoff from states (S \ {i},r) and (S \ {i},r — 1) is, for any i € S, constant
across equilibria and the payoff from initiating a vote or stopping is 0.

To shows that the leader has an optimal action at the initial history of I'(S,7), fix 6 € ¥
and, Vi € S, let a; be the leader’s equilibrium payoff from (S\ {i}, — 1) and let r; be the
leader’s equilibrium payoff from (S'\ {i},r). Let A = {initiate a vote,stop} U (S x R} ) be
the leader’s action space at the initial history of I'(S,r) and let v : A — R be the leader’s
payoff function at the initial history of I'(S,r). Clearly, v(initiate a vote) = v(stop) = 0.
For any (i,t) € S x Ry, we have

o(i.t) = {(57’1- ?f t<c(S,r, z) ‘ (10)
da; —t  ift > c(S,r,i)

The leader’s payoff maximization problem reads max,c 4 v(a). For any i € S, max;er, v(i,1)
has a solution and we can set v; = max;egr, v(i,t). Because max,c4 v(a) is equivalent to
max {0, max;es {v;}} and because the latter problem is finite and hence admits a solu-
tion, the former problem admits a solution as well. Set I(S,r) = argmax, 4 v(a). Part
1b follows from parts 2a, 3 and 4 we prove below.

We now prove part 2a. By construction, o constitutes an equilibrium in I'(S, r) if and
only if 0 € ¥. Fix & € ¥ in which the policy passes and suppose, towards a contradiction,
that on the equilibrium path the leader approaches r+1 or more members. If the member ¢
approached in (S, ) accepts the leader’s offer then the game proceeds into state (S\{i}, r—
1) in which, by the induction hypothesis, the leader on the equilibrium path approaches
r —1 members. Hence, it must be the case that the leader in (S, 7) approaches iy € S with
an offer tg < ¢(5,r, 1), the game proceeds to (S\{io}, r) and starting from (S\{ig},r) the
leader’s equilibrium sequence of actions is (i4,t,),,_; along which all approached members
accept. Fora € {1,...,r},let S, = S\U‘Cl;é {ic}. Then the equilibrium sequence of states
is (Sq,7+1—a),_; and, Ya € {1,...,r}, i, is offered ¢, in state (S,,r +1 — a) and
hence, because i, accepts t,, we have t, = ¢(Sq, 7 + 1 — a,i,). Because the policy passes
in &, all agents in (i,),_;, when approached, are either indispensable or dispensable.
Let T = {igla € {1,...,r},y < W(Sy \ {ia},7 + 1 — a)} be the set of indispensable
agents approached and let E = {izla € {1,....r},y > W(S, \ {i},7 +1 —a)} be
the set of dispensable agents approached. By construction, Va € {1,...,r}, we have
c(Sa,r +1—a,ig) = %, if i, € T and c(Sy, 7+ 1 — a,iy) = 6" 1%, (1 — 6) if
iq € E. The leader’s equilibrium payoff from (S, r) under & is thus

5r+1y_ Z 5aé‘r+l—axia_ Z 5Q5T+1_a$ia(1_5) — 57‘+1 <y _ sz o Zl‘z(l o 5)) )
a€{l,...,r},ia €T a€{l,...,r},ic€E €T i€l
(11)
Because y ¢ L, we have y # > ,_rx; and hence, because & constitutes an equilibrium,
Y>> icrxi. Because § > 0 > 04, we thus have y — >, p i — > cpai(1 —6) > 0.
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We now construct &’ that constitutes a profitable deviation for the leader. For a €
{1,...,7}, let S° = S\ UZ{{i.} and note that S°\ {ip} = S,. Let &' be identical
to & except that the leader, Va € {1,...,r}, approaches member i, with an offer ¢,
at any history that corresponds to state (S;,7 + 1 — a). We now argue that, Va €
{1,...,7}, member i, offered t, in state (Sg,r + 1 — a) accepts. For any i, € T this
is immediate because we have c(S,,7 + 1 — a,i,) = &%, > (S5, r + 1 — a,i,).
For any i, € E, we have y > W (S, \ {ia}, 7 +1—a) = W(SS\ {io,ia},7+1—a) >
W(SS\ {is},”+1—a), where the weak inequality follows by Lemma 4 part 5, and hence
c(SS,r +1—a,iy) = 6" %, (1 —6) = ¢(Sa, 7 + 1 — a,i,). Because, Va € {1,...,7},
member i, offered t, in state (S5, + 1 — a) accepts, the leader’s payoff from (S, r) under
&' i8 6"(y — Y ier @i — Yiep®i) > 0"y — Yier i — Djep i), which establishes the
desired contradiction.

To prove part 2b, it suffices to prove that given any ¢ € ¥ in which the policy passes,
if there is a dispensable member in (S, 7), then the leader at the initial history of I'(.S, )
approaches a dispensable member ¢ with an offer that ¢ accepts and that there is a dis-
pensable member in the state the game proceeds to, in (S\ {7}, —1). The see the latter
claim, if ¢ € S is dispensable in (S,r) we have y > W(S \ {i},r), by Lemma 4 part 6
we have, Vj € S\ {i}, W(S\ {i},r) > W(S\{i,j},r — 1), and thus any j € S\ {i} is
dispensable in (S\{i},r—1). To see the former claim, fix & € ¥ in which the policy passes.
Let E={i e Sly>W(S\{i},r)}, T={ieSlye W(S\{i},r—1),W(S\ {i},r))}
and Z ={i € Sly < W(S\ {i},r — 1)} be, respectively, the set of dispensable, indispens-
able and inconsequential members in (S, 7). The leader in equilibrium does not approach
i € Z at the initial history of I'(S,r) because the policy passes in . Suppose, towards
a contradiction, that the leader in equilibrium at the initial history of I'(.S,r) approaches
io € T and E # @. By part 2a, the leader in equilibrium approaches ig with offer ¢g that
ip accepts, that is, with t9 = ¢(S,r,i9) = 0"z;,, where the second equality follows from
ip € T, and hence the leader’s equilibrium payoff from (S, r) is at most 6" (y — x4,)-

Let (iq),,_; be a sequence of members and, Va € {1,...,r}, let S, =5\ U?;ll{ic} and
t, = "%, (1 —§). Suppose that the sequence of members (i,)"_; is such that iy € E
and i, € S, for any a € {2,...,r}. Consider ¢’ identical to & except that the leader, Va €

{1,...,7}, approaches member i, with an offer ¢, at any history that corresponds to state
(Sa;7+1—a). We now argue that, Va € {1,...,7}, member i, offered ¢, in state (S,,r +
1 — a) accepts. To see this, it suffices to argue that, Va € {1,...,7}, i, is dispensable in

state (Sq,r+1—a). By construction, i; € E and hence i; is dispensable in (S,7) = (S, 7).
Note that because i; is dispensable in (S,7), we have y > W(S \ {i1},r). By Lemma 4
part 6, we have, Va € {2,...,r}, W(S\ {i1},7) > W(S\ UV {i.},r+1—a) = W(S,\
{ia},r+1—a). Therefore, Va € {2,...,r}, i, is dispensable in (S,,r+1—a). Because the
leader approaches all members in the (i,);_; sequence with offers the members accept,
her payoff from &’ is §"y — D oael, .} sotortl=ag, (1-6)=0"(y— D aefl,.r} Tia (1=9)).
Because § > § > 0y, we have z;, > 1 > nw,(1 —6) > > ae(l,..r} Tia(1 — 6) and thus
Y — Tip <Y = Daeq1,..r} Tia(1 — 5), which establishes the desired contradiction.

We now prove part 2c. Fix ¢ € ¥ in which the policy passes. Let (iq),_; be the
equilibrium sequence of approached members. By part 2a, this sequence consists of r
members. For a € {1,...,7}, let S, = S\ UZ{{i.} and t, = ¢(Sa,7 + 1 — a,iy). On
the equilibrium path, Va € {1,...,r}, the leader approaches i, with an offer ¢, in state
(Sa, 7 +1—a) and i, accepts tq. Let T = {igla € {1,...,7},y < W(Se \ {ia},r+1—0a)}
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be the set indispensable agents approached and let E = {izla € {1,...,7},y > W (S, \
{is},7 +1—a)} be the set of dispensable agents approached. By part 5, t, = 6" %z;,
for any i, € T and t, = 6" 1%, (1 — §) for any i, € E. The leader’s equilibrium payoff
from & is thus 0"(y — > icr i — D ;ep (1 —0)).

When r = |S|, we have T' = S because, Va € {1,...,r}, W(S \ {ia},r +1—a) = oc.
By Lemma 5 part 2, S is a solution to (4). Hence, suppose r < |S|. Clearly, T € 2°
and we argue that y > W((S\ T),r — |T]). We have either |T| = r or |T| < r. In
the former case, W((S \ T)',r — |T|) = 0. In the latter case, for the first dispensable
member approached, ij7|41, we have y > W (Sir11 \ {éj7j41},7 — |T]). By part 2b, all
indispensable members are approached before any dispensable member is approached and
hence S)p41 = S\T. Because i|7|4; is approached in state (Sipj4.1,7—|T|) = (S\T,r—|T),
we have i1 < max S\ T and hence, by Lemma 4 part 5, W((S\T)\ {ijpjs1},7—1T|) >
W((S\T)\ {max S\ T},r —|T|). Thus y > W((S\T),r —|T|). Because T € 2° and
y>W((S\T),r—|T|), it suffices to prove that T, € 2° such that dier Ti > D jer, Tj
and y > W((S\ Tp),r —|T,|)) does not exist.

Suppose, towards a contradiction, that T, € 2° such that > jerTj > ZjeTa x; and
y > W({(S\T,),r — |Tp|)) exists. If |T,| > r, then any T, C T, such that |T;| = r
satisfies 3 ;cq 5 > D icq, @ and W((S\T,),r — [To])) = W((S\ Tp)',r — |Tp[)) and
hence it is without loss of generality to assume that |T,| < r. Let (ig),_; be a sequence
of members and, Ya € {1,...,7}, let S, = S\ Ug;ll{zg} Suppose that the sequence
of members (ig)g—; is such that ig € To Va € {1,...,[To}, i,y = max S\ Tp, and
ig € Sy Va € {|T,| +2,...,r}. Let B, = {|T,| +1,...,r}. Let t; = 6" %o for
any if € T, and t; = 617 %; (1 — §) for any i € E,. Consider &' identical to &
except that the leader, Ya € {1,...,r}, approaches member i with an offer ¢ at any
history that corresponds to state (S;,7 + 1 — a). We now argue that, Va € {1,...,7},
member i) offered ¢S in state (SS,7 + 1 — a) accepts. To see this, for any i € T, we
have ¢ = 6""'7%2; and hence member i offered t; in state (Sg,r + 1 — a) accepts.
To see that any ig € E, accepts to in (S5,7 + 1 — a), it suffices to argue that any i €
E, is dispensable in (S2,r + 1 — a). Member U max S \ T, is approached in
( 41T |T,]) = (S\ Ty, —|T,|) and we have y > W((S\Tp)',r—|Tp|). Thus i
dispensable in (S

° .

r—|T,|). Because i/, r—|Ty|), we have

LATSE L)1 [ATSE
y > W(S\UL7;’1|+1{i2}, r+1—(|T5|+1)). By Lemma 4 part 6, we have, Va € {|T,|+2,...,r},
W(S\UL o} r+1—(|Ty|+1)) > W(S\U_,{i%}, r+1—a). Thus, Va € {|Tp|+2,...,7},
y>W(S\U {i2},r+1—a) and thus 4 is dispensable in (S5, + 1 — a). Because the
leader approaches all members in the (i))._; sequence with offers the members accept,
her payoff from 6" is 6"(y — Y cr, i — Dsep, ©i(1 — 0)). Because § > § > ., we have
Yier, Tit Y icp, Ti(1=0) <D icr it nan(1-0) < 3 ier @i < Y ier Tit Y iep zi(1-10)
and thus y = > i cp i = icpi(1=06) <y—> i ¥i— D icp, i(1—0), which establishes
the desired contradiction. Part 2d now follows from part 2c and Lemma 5 part 9.

We now prove part 2e. Fix 6 € ¥ in which the policy passes. Let (iq),_; be the
equilibrium sequence of approached members. By part 2a, this sequence consists of r
members. For a € {1,...,r}, let S, = S\ UZ[{i.} and t, = ¢(Su4,7 + 1 — a,i,). On
the equilibrium path, Va € {1,...,r}, the leader approaches i, with an offer ¢, in state
(Sa,m+1—a) and i, accepts tq. Let T = {izla € {1,...,r},y < W(Sg\ {ia},r+1—0a)}
be the set indispensable agents approached and let E = {isla € {1,...,7},y > W (S, \

is dispensable in (S
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{is},7 4+ 1 —a)} be the set of dispensable agents approached. By part 5, t, = 6"t ~%;_
for any i, € T and t, = (57"“*%'%(1 —9) for any i, € E. The leader’s equilibrium payoff
from & is thus 6"(y — > ;cr @i — > ;cpxi(1 —6)). By part 2¢, T' is a solution to (4) and
hence } e xj = (S, r,y). We thus have I(6) < 0" (y—>_;cr @i — D iep i(1—6)) < u(d),
where

1(0) =0"(y = II(S, r,y) — (1 — d)ray)

u(0) =y —1(S,r,y). (12)

The result now follows by the squeeze lemma because lims_,1 [(§) = lims_1 u(d) = y —
(S, r, y)

We now prove part 3. Suppose, towards a contradiction, that y > W(S,r) and the
policy does not pass in some ¢ € . Fix 6 € ¥ in which the policy does not pass. The
leader’s payoff from & is thus 0. If » = |S|, set T' = S. Because W(S,r) = > ;g 2; when
r=1S|,y > W(S,r) impliesy > >",cgx;. If r < |9, let T € 2° be a solution to (3). Thus
W(S,r) = max{> ,cpzi, W((S\T),r — |T|)} so that y > W(S,r) implies y > >, .px;
and y > W((S\T),r—|T]).

Let (i2)'_, be a sequence of members and, Va € {1,...,r}, let S = S\ U*={{i2}.
Suppose that the sequence of members (ig)_; is such that if € T Va € {1,...,|T|},
i1 = max S\ T, and i;, € S Va € {|T| +2,...,r}. Let E = {|T|+1,...,7}. Let
to = 6" for any i € T and t; = 6" %0 (1 — §) for any i; € E. Consider &’
identical to & except that the leader, Va € {1,...,r}, approaches member i{ with an
offer t; at any history that corresponds to state (S5,7 + 1 — a). We now argue that,
Va € {1,...,r}, member i, offered ¢ in state (S7,r 4+ 1 — a) accepts. To see this, for any
ig € T we have tJ = 6”71 7%z;0 and hence member i offered t{ in state (Sg,7 + 1 — a)
accepts. To see that any if € F accepts tg in (Sg,r + 1 — a), it suffices to argue that any
ic € E is dispensable in (S5, + 1 — a). Member ijpj41 = max S \ T is approached in
(S&‘H,r —|T|) = (S\T,r—|T|) when, by y > W((S\T)',r—|T|), dispensable. Because

o . . o T+1 .0
ij7|41 is dispensable in (S|T|+1, r —|T|), we have y > W (S \ UL:‘fl{zc},r +1— (T +1)).

By Lemma 4 part 6, we have, Va € {|T| + 2,...,7}, W(S\ u‘CT:'fl{z'g},r +1—(|T| +
1)) > W(S\ Ui {ic},r+1—a). Thus, Va € {|T|+2,...,7}, y > W(S\ U {id},r+
1 — a) and thus i; is dispensable in (Sg,r + 1 — a). Because the leader approaches all
members in the (i5)7_, sequence with offers the members accept, her payoff from &’ is
8" (y — Y ier®i — Yjepvi(l — 8)). Because § > § > 6, and y > > ,.p 2, we have
0 <y—>er®i—nwp(l—=0) <y—>cr® — ) ;cpri(l —§), which establishes the
desired contradiction.

We now prove part 4. Suppose, towards a contradiction, that y < W (S,r) and the
policy passes in some ¢ € 3. Fix 6 € ¥ in which the policy passes. Suppose r = |5].
By part 2c and Lemma 5 part 2, all members in S are approached on the equilibrium
path and each member is approached in a state in which he is indispensable. The leader’s
payoff from & is thus 6" (y — > ;. g #i) < 0, where the inequality follows from y < W (S, ),
because W(S,r) = > .cgx; when r = [S]. The leader thus has a profitable deviation to
stop at the initial history of I'(.S, r), a contradiction.

Suppose r < |S| and let T' be the set of members approached on the equilibrium path
when indispensable. By parts 2a and 5, the leader’s equilibrium payoff is at most 6" (y —

Y icr ®i). From y ¢ L, we have y # > .. x; and from 6 € 3, we have y — > .. x; > 0.
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Thus y—>,cp i > 0. Moreover, by part 2¢, T solves (4) and hence y > W ((S\T)',r—|T).
Thus y > max{> ,.px;, W((S\T),r —|T|)} > W(S,r), which establishes the desired
contradiction.

This concludes the proof of the induction step from k to k + 1, for a given (S, r) € DY
with |S| = k + 1. Repeating the same step for all states (S,r) € DY with |S| = k + 1
completes the specification of the [ and ¢ functions that define the space of strategies
3. |

7.4 Proof of Proposition 8

Let t = (t1,...,t,), where t; > 0 for each i € N = {1,...,n}, be a profile of transfers
and let a = (ay,...,a,) be the profile of members’ actions, where for each i € N, a; =0
indicates rejection and a; = 1 indicates acceptance.

Consider the leader’s decision in the second period, that is, in a subgame starting with
t and a. The leader’s equilibrium actions are as follows. If Zie N @i > q and Zie N ait; <
y, then the leader initiates a vote and hence the policy passes. If ) ..y a; > ¢ and
> ien @it; >y, then the leader stops and hence the policy does not pass. If ;. < ¢—1
then the leader stops or initiates a vote when » . nt; = 0 and stops when » . nt; > 0
and hence the policy does not pass.

Consider the members’ decision in the first period given t. Let I'(t) be the subgame
that starts at the history in which the leader’s offer is t. Assume the sequence in which
members move in I'(t) is (1,2,...,n). This assumption is without loss of generality
because the argument below does not invoke that x; is weakly increasing in i. Let H;(t) be
the set of histories in I'(t) in which member i € N moves. For any history h € U;c y H;(t)
in which member ¢ € N moves, let a(h) = (ai(h),...,a;—1(h)) be the profile of actions of
the members moving before i and let #h =3 .oy i 1ya;(h) + X e, ny It = 25)
be the number of members who either move before ¢ and accepted at history h or move
after ¢ and have been offered transfers weakly above their loss. We prove the following
two lemmas.?*

Lemma 10. Let o(t) be an equilibrium of I'(t). Suppose Y ;cnti < y. Consider h €
Uien Hi(t) at which member i moves. Then, in o(t) starting from h, the policy

1. passes if either #h =q — 1 and t; > ©; or #h > q,
2. does not pass if either #h =q—1 and t; < x; or #h < q— 2.

Proof. Fix t, equilibrium o(t) of I'(t) and suppose that ), .\t < y. We proceed by
backward induction.

Consider h,, € H,(t) at which member n moves. Irrespective of n’s action, in o(t)
starting from h,,, the policy does not pass if #h,, < ¢—2 and the policy passes if #h,, > q.
If #h, = ¢ — 1, then we have Zje{l,...,n—l} a;(hy,) = ¢ — 1 and hence the policy passes
if member n accepts and does not pass if n rejects. The payoff from the two actions is
—x, + tn, and 0 respectively. Because o(t) constitutes an equilibrium, in o(t) starting
from h,,, n accepts and the policy passes if —z,, + ¢, > 0 and rejects and the policy does
not pass if —x, +t, < 0.

24Whenever the leader offers transfers the payoffs are received in the second period. The lemmas thus work
with the un-discounted payoffs in order to minimize the notation.
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Now suppose the lemma holds for each history h € Ujcgpi1,. o3 Hi(t), where k €
{1,...,mn — 1}. We need to prove that the lemma holds for each history hy € Hy(t).
Consider hy, € Hy(t) at which member k moves. Note that (7) if k accepts and zx11 > tg41,
then the game proceeds to hyy1 with #hg 1 = #hg, (it) if k accepts and g1 < tr11, then
the game proceeds to hyiq with #hg11 = #hi + 1, (ii9) if k rejects and xp11 > g1, then
the game proceeds to hiy1 with #hr1 = #h, — 1, and (iv) if k rejects and zp11 < tgaq,
then the game proceeds to hyy1 with #hgi1 = #hk.

If #hy < g — 2, then the game either proceeds to hiy1 with #hge1 < g — 2, in which
case the policy does not pass in o(t) starting from hgyq by the induction hypothesis, or
proceeds to hx41 with #hg11 = ¢ — 1, in which case we have x4 < tx11 and the policy
does not pass in o(t) starting from hyy; by the induction hypothesis. In either case the
policy does not pass in o(t) starting from hy.

If #hy, > q, then the game either proceeds to hiy1 with #hi11 > g, in which case the
policy passes in o(t) starting from hgy1 by the induction hypothesis, or proceeds to hyi1
with #hgy1 = g — 1, in which case we have x;11 > tx11 and the policy passes in o(t)
starting from hy11 by the induction hypothesis. In either case the policy passes in o(t)
starting from hy.

If #h;, = ¢ — 1 and member k accepts, then the game either proceeds to hiyq with
#hi11 = ¢, in which case the policy passes in o(t) starting from Ay, by the induction
hypothesis, or proceeds to hii1 with #hr1 = ¢ — 1, in which case we have xg11 > tg11
and the policy passes in o(t) starting from hgyq by the induction hypothesis. In either
case the policy passes in o(t) starting from h; when member k accepts.

If #h;, = q¢ — 1 and member k rejects, then the game either proceeds to hyyi with
#hg+1 = q¢ — 2, in which case the policy does not pass in o(t) starting from hg4q by the
induction hypothesis, or proceeds to hiy; with #hr1 = ¢ — 1, in which case we have
ZTpr1 < tre1 and the policy does not pass in o(t) starting from hg,q by the induction
hypothesis. In either case the policy does not pass in o(t) starting from hy when member
k rejects.

The payoff of member k from the two actions at hy with #hg = g — 1 is thus —xg + tx
and 0 respectively. Because o(t) constitutes an equilibrium, in o(t) starting from hy, with
#hi = q— 1, k accepts and the policy passes if —xj + t; > 0 and rejects and the policy
does not pass if —xp + t < 0. |

Lemma 11. Let o(t) be an equilibrium of I'(t) and let a be the equilibrium members’

action profile. Suppose the policy passes in o(t). Then

1 )Y ien @iti = Y ey ti and

Proof. Fix t, equilibrium o(t) of I'(t), the equilibrium members’ action profile a and
suppose that the policy passes in o(t).

Part 1: It suffices to prove that, Vi € N, t; > 0 implies a; = 1. Suppose, towards a
contradiction, that ¢; > 0 and a; = 0 for some ¢ € N. The payoff of member ¢ from the
equilibrium action a; = 0 is —x; because the policy passes in o(t). Suppose member i
deviates to a; = 1. The payoff from the deviation is either at least 0, when the policy
does not pass following the deviation, or —z; + t;, when the policy passes following the
deviation. In either case, the deviation to a; is profitable.
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Part 2: It suffices to prove that for any h € U;ec y H;(t) at which member i moves, the
policy does not pass in o(t) starting from h if either #h = ¢—1 and ¢; < z; or #h < ¢—2.
We proceed by backward induction.

Consider h,, € H,(t) at which member n moves. If #h,, < g — 2, then the policy does
not pass in o(t) starting from h,, irrespective of member n’s action. If #h, < g — 1, we
have Zje{l,...,n—l} a;j(hp) = ¢ — 1 and hence the policy does not pass if member n rejects
and either does not pass or passes if member n accepts. In the former case the policy does
not pass in o(t) starting from h,. In the latter case, because the payoff from rejection
is 0 while the payoff from acceptance is —x,, + t,, because t, < x,, and because o(t)
constitutes an equilibrium, member n rejects and the policy does not pass in o(t) starting
from h,,.

Now suppose that for each history h € Ujcqpy1,..n} Hi(t) at which member i moves,
where k € {1,...,n—1}, the policy does not pass in o(t) starting from h if either #h = ¢—1
and t; < z; or #h < g — 2. We need to prove that for each history hy € Hy(t) at which
member k& moves, the policy does not pass in o(t) starting from hy if either #hp = ¢ — 1
and ty < xp or #hy, < g — 2. Consider hy € H(t) at which member k moves.

If #hy < g — 2, then the game either proceeds to hiy1 with #hrt1 < g — 2, in which
case the policy does not pass in o(t) starting from hy,1 by the induction hypothesis, or
proceeds to hyg41 with #hg11 = ¢ — 1, in which case we have x4 < tx11 and the policy
does not pass in o(t) starting from hyy; by the induction hypothesis. In either case the
policy does not pass in o(t) starting from hy.

If #h; = q¢ — 1 and member k rejects, then the game either proceeds to hgyi with
#hi+1 = q — 2, in which case the policy does not pass in o(t) starting from hgy1 by the
induction hypothesis, or proceeds to hiy; with #hri 1 = ¢ — 1, in which case we have
ZTp+1 < tre1 and the policy does not pass in o(t) starting from hygiq by the induction
hypothesis. In either case the policy does not pass in o(t) starting from hjy when member
k rejects.

If #hr = q — 1 and member k accepts, then the game proceeds to hiyi; and the
policy, in o(t) starting from hgyq, either does not pass or passes. In the former case the
policy does not pass in o(t) starting from hy. In the latter case, because the payoff from
rejection is 0 while the payoff from acceptance is —xy + t, because t < xj, and because
o(t) constitutes an equilibrium, member & rejects and the policy does not pass in o(t)
starting from hg. [ |

We now prove Proposition 8. For the first part, let o be an equilibrium of the si-
multaneous vote-buying game with transfer promises. Suppose, towards a contradiction,
that the policy passes in 0. Let t be the equilibrium profile of transfers and let a be the
equilibrium members’ action profile. Because o is an equilibrium, o(t) is an equilibrium
of (t). Thus, by Lemma 11 parts 1 and 2, >",cyaiti = > ,cnti = > i, x;. Because
S9_ x; >y, the leaders equilibrium payoff 6(y — Y ien @it;) < 0, and hence choosing to
stop in the first period is a profitable deviation for the leader.

For the second part, let ¢ be an equilibrium of the simultaneous vote-buying game
with transfer promises. Suppose, towards a contradiction, that the policy does not pass
in 0. Then the leader’s equilibrium payoff is at most 0. Consider a deviation for the
leader to t' = (z1,...,24,0,...,0). Let o(t’) be an equilibrium of I'(t’), which exists by
standard backward induction argument. Because ) ..yt = Mo,z <y, and because
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the initial history hy of T'(t') satisfies #hqy = ¢ — 1 and t; > x1, Lemma 10 part 1 implies
that the policy passes in o(t’). Hence, by Lemma 11 part 1, the leader’s payoff from the
deviation is 6(y — Y ey aity) = 0(y — D en ti) = 0(y — >, ;) > 0. This proves part
(a).

To prove the remaining parts, let o be an equilibrium of the simultaneous vote-buying
game with transfer promises and let t be the equilibrium profile of transfers. By part
(a), the policy passes in . Thus o(t) is an equilibrium of I'(t) and the policy passes in
o(t). Hence [{i € N|t; > x;}| > q by Lemma 11 part 2. Moreover, >, nti = > o ;. If
not, then t’ would be a profitable deviation for the leader. Thus t; € {0,2;} Vi € N and
i€ NJt: > 2} = ¢ m

7.5 Proof of Proposition 9

We first prove part (a) by contradiction. Assume y — ¢ > Zjesr x; and there exists
an equilibrium in T'(S,r,¢) in which the policy does not pass. The leader’s payoff in
this equilibrium is 0. Consider the strategy of offering r members in S each x; + €.
Since each member would accept the offer, the policy passes and the leader’s payoff is
y—t— Zje grxj —re > 0 for € > 0 sufficiently low. Hence, the leader has a profitable
deviation, a contradiction.

We next prove part (b) by induction. First consider |S| = r. The same argument as
in the proof of Proposition 1 shows that the policy doe not pass in any equilibrium.

Next, suppose that part (b) holds for [S| —r < k where 0 < k < |S|. We prove
that it also holds for |S| — r = k + 1. Suppose, towards a contradiction, that there
exists an equilibrium in I'(S, r, ¢) in which the policy passes. Suppose in this equilibrium,
the leader approaches a set of members S C S in the first period of I'(S,r,t). Suppose
member i’ is the last one who makes the acceptance/rejection decision in S. Given the
induction hypothesis, when all preceding members in S have rejected the offers, if ¢’
rejects the leader’s offer, then the policy does not pass in any equilibrium in the resulting
subgame T'(S'\ S, r, t) since y —t < > je(s\8)r Ti- Hence, when all preceding members in
S have rejected the offers, member ¢’ accepts the offer ¢, if and only if ¢ > «/. A similar
argument shows that this is true for any member i € S. Given that the policy passes in
equilibrium in T'(S, r, t), the transfer ¢; offered to i € S satisfies t; > ;. Note that in the
subgame that follows the acceptance of the members in i € 3, F(S\S’, r— |5’\,t+zieg t),
we have y —t — > . oti < y—t— ), gx. Since y —t < Zjesr xj, it follows that
Y—t—> caTi < Zje(S\S‘)T—W\ r; and therefore y —t—3> . _ot; < zje(S\S)?‘—\S\ xj. By the
induction hypothesis, the policy does not pass in any equilibrium in T'(S'\ S,r — |S],t +
;g ti), a contradiction. Hence, part (b) holds. [ |
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Supplementary appendix
Proposition A1l. In the up-front-payment game, consider state (N, q) and suppose that
y>W(N,q):
1. (one vote needed) W(N,q) = x1 and II(N,q,y) =0 if ¢ =1 and n > 2,
2. (unanimity) W(N,q) =3 ;cy zj and I(N, q,y) = > ;cn @) if ¢ = n,
3. (stmple majority and less) W (N, q) = x4 if ¢ < ”—H and II(N, q,y) =0 if g < ”T“,
4 (%ﬁ_l] — q_HJx and II(N, q,y) = tx, where
t is the smallest non-negative integer such that y > [1= ], ife;=x for alli € N,

5. (i) W(N,q) depends only on the losses of members 1 through q, that is, W (N, q) =
W(N,q) if [IN| = |N| and x; = &; for all i € {1,...,q}, and (ii) the equilibrium
temptation phase includes at most ¢ members and includes only members with ¢
lowest losses, that is, any T that solves (2) satisfies |T'| < q and i ¢ T if z; > x4,
and

6. W(N,q) <> % 2 andII(N,q,y) =0 ify > >.7_  2; and ¢ < n.

. (homogeneous losses) W (N, q) = x =]

The proposition shows that when the leader needs one vote for the policy to pass, the
policy passes in equilibrium depending on how y compares to x; and passes at no cost
(in the limit). When the passage of the policy requires the votes of all members, the cost
of passing the policy is the sum of the members’ losses. For voting rules weakly below
simple majority, the policy passes when y > z, and passes at no cost (in the limit) for
voting rules strictly below simple majority. Parts 1 through 3 summarize these special
cases. Part 4 derives W and II when members have homogeneous losses and implies that
both are non-increasing in n and non-decreasing in q. Part 5 applies generally and shows
that the condition for the policy passing depends only on the losses of the members with ¢
lowest losses. In addition, any equilibrium temptation phase includes at most ¢ members
and excludes members with losses strictly above the loss of member g. Part 6 connects the
up-front payment and the transfer promise models. Recall that with transfer promises,
the policy passes in any equilibrium when y exceeds Y ¢ | x; at no cost (in the limit).
With up-front payments, the policy passes not only when y > Y7 | z;, in which case it
passes at no cost (in the limit), but also when y € (W/(N,q), > L, ;).

Proposition A2. In the up-front-payment game, consider state (N,q) and suppose that
q<nand) cyxi=c. Then W(N,q) < ;=r55. Moreover, if x; =¢ fori€{l,...,n—

ny} and x; = M fori e {n—ny+1,...,n}, where ny = k(n —q+ 1) for some
kell,... ;= q+1j} then ) .y x; = ¢ and there exists € > 0 such that, for all e € (0,8),

W(N,q) = 2o,

Proposition A2 implies that a committee composed of n; equally strongly opposed
members, where ny is multiple of n — ¢ + 1, with the remaining members only weakly op-
posed, represent the most effective opposition in the sense of bringing W (N, q) arbitrarily
close to its upper bound. Multiple such profiles may exist. For example, when n = 5 and
q = 4, then W(N, q) % under profile (g,¢, ¢, <= 35,&) and W(N,q) = <= under
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profile (e, =, 555, 55, 55°).
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Note also that when n =5 and ¢ = 4, Proposition Al part 4 implies that W(N,q) =
% under the homogeneous profile (£, <, £, £, £), so a homogeneous committee does not
pose the most effective opposition. At the same time, when all members’ loss equals 7,
then from Proposition Al part 4 we have W (N, q) = Lni’; —1/ 5. That is, homogeneous
opposition maximizes W (N, q) when n is divisible by n — ¢+ 1, which happens more often
the closer ¢ is to n and can never happen when n is odd and ¢ = ”T‘H When n is not
divisible by n — g + 1, then the homogeneous opposition does not maximize W (N, q) and,

because [; =] = [1+ nZ}H , is more suboptimal the smaller is n and the larger is q.
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