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Introduction

» We revisit Wald's sequential decision problem: DM decides
sequentially on information acquisition before making a
decision.

» Classical feature: Information takes time to arrive, and earlier
decision is better (discounting or flow cost)

» New feature: Different types of information are received, and
the DM allocates limited attenion on them for processing.

» Applications.

Project selection

Recruiting

Selection of news media

Deliberation /research strategy: “Prove” or “disprove?
Cognitive process (777)
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Model

Baseline Model

Two States: s € {A, B}
One DM — Two actions: a, b

v

v

v

Payoffs conditional on state and action:
] State: \ A \ B
a ud ¥ uB

a
A B x
b uy up

|

> Assume uf > uf), uf > uB.

v

Prior probability of state A: pg € (0, 1).

v

Continuous time t > 0, discount rate r > 0.

v

At each point in time, the DM can take an action a or b, or
acquire information.



Model

Information

» At each time t, DM allocates unit of attention between two
Poisson-signals (or news sources):

» A signal: the arrival rate of news is (A%, \B) = (), 0).
» B signal: the arrival rate of news is (A\*, \B) = (0, \).

v

a € [0, 1], amount of attention directed to A signal:

v

B :=1— «, amount of attention directed to B signal:

v

Given “attention choice” («, 3), in state A, it is learned at the
Poisson rate of Ao and in state B, it is learned at rate Af3,

v

Posterior jumps to p = 0 or p = 1 after observing a signal.

v

No signal — Bayesian updating:

pt = —Aa — B)p(L - p).
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Model—Benchmarks

» Immediate Action
» Action a yields: U,(p) := pu? + (1 — p)u?
» Action b yields: Uy(p) := pujp + (1 — p)uf
» Optimal action yields U(p) := max {U,(p), Us(p)}
> First Best: U'(p) = pul + (1 — p)uf.
» Unlimited Attention: o« = 3 = 1. Upper bound for
experimentation
AU (p)
r+A
» Stationary attention strategy (with limited attention):
a=p=3 (= p:=0) yields
AU (p)
2r+ X\

» Preliminary observation:

AU (p)
T2r4+ A

V(p) = max { U(p)



Model—Preliminary Analysis

(Parameters: A =1,r = %, =1, u =708 =u= _%)
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> Define p: Us(p) = Us(p)



Model—Preliminary Analysis

(Parameters: A =1,r = 1—36, ult =1, UE =7 uB = uﬁ - _%)
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Optimization Problem

-
V(po) := max / e "t [Pt)\OétUaA + (1= pe)A(1 - at)uﬂ Qe(a, po)dt
0

(O‘f’T)
+e "7 Qr(a, po)U(pr)

s.t. pr = —A(2ar — 1)pe(1 — py),
Qule p) = (o™ + (1 = po)e ™),

where

» T is the time at which DM takes an action if no signal arrives.
> (ait)e>0 is the attention (information) strategy
> A= fot asds; By ==t — A;: “accumulated” attention.

> Q:(a, po) is the probability that no signal arrives until t given
a and po,



HJB Equation

(r+\)V(p) = max {ug‘ Xap + uB A1 — a)(1 - p)
a€0,1]

= Al(2p — Do — p] V(p) = A2a = 1)p(1 ~ p)V/(p)}

assuming the RHS is no less than (r + A\)U(p), or else the RHS
becomes (r + A)U(p).

» Objective is linear: Bang-Bang solution. Derivative:

u Ap—up A(1—p)—A(2p—1)V(p)—2Xp(1—p)V'(p) (FOC)

» Ifa=0
r+X1—-p uB
Vo(p) = )\p(l(—p))VO(p) - (ODE-0)
» fa=1
oy AP uf _
Vilp) = 3 g Vi) 15 (ODE)



Two Learning Strategies:

» Confirmatory strategy:

» Trying to confirm what is likely
» Choose oo =1 for a high p and o = 0 for a low p.

» Contradictory strategy:

» Trying to rule out what is unlikely
» Choose a = 0 for a high p and aa =1 for a low p.



Structure of Value Function and Optimal Policy

The optimal solution has one of the following forms:

1. No information acquisition: V(p) = U(p) for all p.
2. Only “contradictory evidence”:

> There are cutoffs 0 < p* < p < p* < 1 such that the optimal
structure is

| ——— pr—+—<«—p———p"'—— — |
N—— N——

b a=1 a=0 a

3. “Contradictory” and “Confirmatory” evidence:

> There are cutoffs 0 < p* < p < p* <p < p* < 1 such that
the optimal structure is

contradictory confirmatory contradictory
* * =
| ——p" +—«— p——p—<—p —— p"——
b - a=1 - a=0 a=1




Example (Case 2: Only Contradictory)

(Parameters: A =1,r = % up =1, UE =7 uf = uf = —%)
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Example (Case 3: Confirmatory and Contradictory)

. _ _ 3 A
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Example (Case 3: Confirmatory and Contradictory)

(Parameters: A =1,r = 1%, ui =1, ”E =7, u8 = uf)‘ - _%)
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Example (Case 3: Confirmatory and Contradictory)

(Parameters: A =1,r = 1%, ui =1, ”E =7, u8 = uf)‘ - _%)
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[ntuition

» For an “extremely certain” DM: Immediate action is clearly
optimal.

» For a “moderately certain or highly convinced” DM: “Little
value of acquiring info that will not change your action; Better
look for a surprise, which will either change your action or rule
out the unlikely and convince you of the likely more than
before.”

» For an “uncertain” DM: “Surprise value of learning the unlikely
is small when one is uncertain, and ruling out the less likely
takes a long time; may as well learn the likely.”



Characterizing the cut-offs p*, p*

Lemma

» If we are in Case 2 or 3 we have

AU (e ) AT (p)
A

At p* the DM is indifferent between b and o = 1:

Up(p") =

(r +A)Us(p") = uf Ap* + A(L = p*)Us(p") = Ap*(1 — p*) Up(p")
= (r+)Us(p") = AU '(p") -

» From ODEs, we obtain two branches V ,(p) and V(p) that
define the Value function for contradictory evidence.



Characterizing the cut-off p*

Lemma

B T7¥ 7 % =

up o _ AU (PY) AU (p")

= — V = =
Fop )= e A

nd V¢(p*)

At p* the DM is indifferent between a =1 and a = 0:
> Optimality of a = 1 implies V(p*) = )‘g:J(r'i\*).
» From ODEs, we obtain two branches V (p) and V (p).

— AU (p*) .
> Vir(p*) = Vig(p*) = 258 pins down p




When is (some) Information Acquisition Optimal?

Fix the parameters u?, uZ, uﬁ, uE.

> If uftuf < uBufl (“mistakes are very costly”), then some
experimentation (contradictory) is optimal.

» Otherwise, the experimentation is valuable if

0 .= r < (v = uf) max (UE — uf) L
DY a b vAuB — uBuA’ A — uB
a“b a“b b b




When is (some) Confirmatory Evidence Optimal?

> If ubA, uB are negative and sufficiently large in absolute values

(“mistakes are sufficiently costly”), then a confirmation regions
€exists.

» Otherwise, there exists § > 0 such that a confirmatory region

exists if

0=—<§6.

The condition is obtained from

Ver (™) > Ve (P7)

>~




General Model: Rich signals

Continuum of signals

Signals indexed by A € [0, 1]:

» Given ) € [0, 1], two states are learned (conclusively) at
Poisson arrival rates of (A4, A\B) = (), T()\))

» [(A) is decreasing and concave, symmetric
(F(A)=1-T(1-X)),and (1) =0,T(0) =1,I(y) =7, for
some vy > 1/2.

» The DM picks A € (0,1) at each moment. Absent any news,
the belief is updated via

p=—-(A—=T(A)p(1-p).



Example for Richer Set of News Sources

aA+TA))+ (1 —a)y/A2+T(A)2=1

— T
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Sketch of Analysis

» HJB can be written as:

(r+A)V(p)

= max {62+ uf TN = p) = (Ap+ T(A)(L = p))V(p)

—(A=T\)p(1—p)V'(p)}.

» The overall structure of the optimal policy is preserved:

contradictory confirmatory contradictory
o\ o\

|——p'«— pTF —p—— pf—<—p— P —>p ——
b — A=1 A>y T A<y, rising A>v,rising - A<y A= a



Example Rich News: Confirmatory and Contradictory
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Example Rich News: Confirmatory and Contradictory
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Example Rich News: Only Contradictory

(Parameters: r =3, u
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Example Rich News: Only Contradictory
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General Model: Non-conclusive signals with flow cost

Posterior choice model

A signal, or news source, is indexed by a posterior g € [0, 1].

>

>

>

Any news g arrives at the Poisson arrival rate of A > 0.
Once news q arrives, it becomes the DM's posterior belief.
The DM picks g at cost c(q, p) given current belief p.
c(p,p) = cq(p, p) = 0, cqq(+, ") = 0, cgp(+,) < 0.

GGl 2) =

Special case: Entropy. If the cost is mutual information on the
experiment, the flow cost becomes

c(q,p) = uD(qllp) = p(qIn(q/p)+ (1—q)In(1—q)/(1 - p)).
Absent news, the belief updates according to: p = —\(q — p).



General Model: Non-conclusive signals with flow cost

Benchmark: r =0

» Closed form solution, characterized by two posteriors:
g+ > p > g—, such that, an immediate action is chosen for
p < g_ and for g > p,, and some mix of g_ and g, is chosen
for p € [g-, q4].

» The outcome coincides with the Rl type discrete choice
prediction (e.g., Matejka-McKay (2015)). [An implication of
the “chain rule” property of the entropy; but note it applies to
“a little" beyond the entropy model.]

» The optimal dynamic attention path not uniquely pinned
down: contradictory, confirmatory, or stationary all consistent
with optimal decision rule.

» Away from r = 0, we have a unique optimal decision. =
Sequential decision foundation for the RI choice.



General Model: Non-conclusive signals with flow cost

General Case: r >0

» The HJB equation:

(r+A)V(p) = max [(AU(q) — c(g,p) = Ma — p)V'(p)] ,

» The RHS has two local optima: g4+ (p) > p > q_(p).

» The structure of the optimal policy is same as before:
V(p) - max{ U(p)7 Vct(P), ch(P)}, Whel’e

» V(p) = value of contradictory strategy: Choose g, (p) > p
for low p and g_(p) for high p.

» V.(p) = value of confirmatory strategy: Choose q(p) > p
for high p and g_(p) for low p.

» For the entropy model, the confirmatory region never arises in
all numerical exercises.



Example: Symmetric Payoffs

(Parameters: A = =1, r = 0.05, v2 = UE =108 = ”bA =-1)
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Example: Asymmetrically Risky Actions

(Parameters: A\ = =1, r = 0.8, uf =5, UE =2, uf = ”fa‘ =0)
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Summary

» In a broad set of Poisson bandit signal environments, the
ptimal learning strategy combines

» immediate action
» contradictory learning
» confirmatory learning

» Uncertain DM tends to seek confirmatory evidence.

» Moderately certain DM becomes “skeptical’ and seeks
contradictory evidence.

» Extremely certain DM takes immediate action.



Extensions

» Response time?!?: Yet to be explored.
» More states/actions
» What is the multi-dimensional equivalent of “contradictory
evidence'?
» Uncertain state may involve different values of A.
» Applications...
» Experiment... (we have worked out a finite-period version of

our model.)



