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Introduction

I We revisit Wald’s sequential decision problem: DM decides
sequentially on information acquisition before making a
decision.

I Classical feature: Information takes time to arrive, and earlier
decision is better (discounting or flow cost)

I New feature: Different types of information are received, and
the DM allocates limited attenion on them for processing.

I Applications.
I Project selection
I Recruiting
I Selection of news media
I Deliberation/research strategy: “Prove” or “disprove”?
I Cognitive process (???)



Model

Baseline Model

I Two States: s ∈ {A,B}
I One DM — Two actions: a, b
I Payoffs conditional on state and action:

State: A B

a uAa * uBa
b uAb uBb *

I Assume uAa > uAb , u
B
b ≥ uBa .

I Prior probability of state A: p0 ∈ (0, 1).
I Continuous time t ≥ 0, discount rate r > 0.
I At each point in time, the DM can take an action a or b, or

acquire information.



Model

Information

I At each time t, DM allocates unit of attention between two
Poisson-signals (or news sources):

I A signal: the arrival rate of news is (λA, λB) = (λ, 0).
I B signal: the arrival rate of news is (λA, λB) = (0, λ).

I α ∈ [0, 1], amount of attention directed to A signal:
I β := 1− α, amount of attention directed to B signal:
I Given “attention choice” (α, β), in state A, it is learned at the

Poisson rate of λα and in state B , it is learned at rate λβ,
I Posterior jumps to p = 0 or p = 1 after observing a signal.
I No signal — Bayesian updating:

ṗt = −λ(α− β)p(1− p).
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Model—Benchmarks
I Immediate Action

I Action a yields: Ua(p) := puAa + (1− p)uBa
I Action b yields: Ub(p) := puAb + (1− p)uBb
I Optimal action yields U(p) := max {Ua(p),Ub(p)}

I First Best: U∗(p) = puAa + (1− p)uBb .
I Unlimited Attention: α = β = 1. Upper bound for

experimentation
λU
∗
(p)

r + λ
I Stationary attention strategy (with limited attention):
α = β = 1

2 (⇒ ṗt = 0) yields

λU
∗
(p)

2r + λ
.

I Preliminary observation:

V (p) ≥ max

{
U(p),

λU
∗
(p)

2r + λ

}



Model—Preliminary Analysis

(Parameters: λ = 1,r = 3
10 , u

A
a = 1, uBb = .7, uBa = uAb = −1
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I Define p̂: Ua(p̂) = Ub(p̂)
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Optimization Problem

V (p0) := max
(αt ,T )

ˆ T

0
e−rt

[
ptλαtu

A
a + (1− pt)λ(1− αt)u

B
b

]
Qt(α, p0)dt

+ e−rTQT (α, p0)U(pT )

s.t. ṗt = −λ(2αt − 1)pt(1− pt),

Qt(α, p) =
(
p0e
−λAt + (1− p0)e−λBt

)
,

where

I T is the time at which DM takes an action if no signal arrives.
I (αt)t≥0 is the attention (information) strategy
I At :=

´ t
0 αsds; Bt := t −At : “accumulated” attention.

I Qt(α, p0) is the probability that no signal arrives until t given
α and p0,



HJB Equation

(r + λ)V (p) = max
α∈[0,1]

{
uAa λαp + uBb λ(1− α)(1− p)

− λ [(2p − 1)α− p]V (p)− λ(2α− 1)p(1− p)V ′(p)
}
,

assuming the RHS is no less than (r + λ)U(p), or else the RHS
becomes (r + λ)U(p).

I Objective is linear: Bang-Bang solution. Derivative:

uAa λp−uBb λ(1−p)−λ(2p−1)V (p)−2λp(1−p)V ′(p) (FOC)

I If α = 0

V ′0(p) =
r + λ(1− p)

λp(1− p)
V0(p)−

uBb
p
. (ODE-0)

I If α = 1

V ′1(p) = − r + λp

λp(1− p)
V1(p) +

uAa
1− p

. (ODE-1)



Two Learning Strategies:

I Confirmatory strategy:
I Trying to confirm what is likely
I Choose α = 1 for a high p and α = 0 for a low p.

I Contradictory strategy:
I Trying to rule out what is unlikely
I Choose α = 0 for a high p and α = 1 for a low p.



Structure of Value Function and Optimal Policy

Theorem
The optimal solution has one of the following forms:
1. No information acquisition: V (p) = U(p) for all p.
2. Only “contradictory evidence”:

I There are cutoffs 0 < p∗ < p̌ < p∗ < 1 such that the optimal
structure is

|— — —︸ ︷︷ ︸
b

p∗←−←−←−︸ ︷︷ ︸
α=1

p̌−→−→−→︸ ︷︷ ︸
α=0

p̄∗ — — —︸ ︷︷ ︸
a

|

3. “Contradictory” and “Confirmatory” evidence:
I There are cutoffs 0 < p∗ < p < p∗ < p < p∗ < 1 such that

the optimal structure is

|— —
b

p∗

contradictory︷ ︸︸ ︷
←−←−

α=1
p

confirmatory︷ ︸︸ ︷
−→−→

α=0
p∗ ←−←−

α=1
p̄

contradictory︷ ︸︸ ︷
−→−→

α=0
p̄∗— —

a
|



Example (Case 2: Only Contradictory)
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Example (Case 3: Confirmatory and Contradictory)
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Intuition

I For an “extremely certain” DM: Immediate action is clearly
optimal.

I For a “moderately certain or highly convinced” DM: “Little
value of acquiring info that will not change your action; Better
look for a surprise, which will either change your action or rule
out the unlikely and convince you of the likely more than
before.”

I For an “uncertain” DM: “Surprise value of learning the unlikely
is small when one is uncertain, and ruling out the less likely
takes a long time; may as well learn the likely.”



Characterizing the cut-offs p∗, p∗

Lemma

I If we are in Case 2 or 3 we have

Ub(p∗) =
λU
∗
(p∗)

r + λ
and Ua(p∗) =

λU
∗
(p∗)

r + λ

Proof.
At p∗ the DM is indifferent between b and α = 1:

(r + λ)Ub(p∗) = uAa λp
∗ + λ(1− p∗)Ub(p∗)− λp∗(1− p∗)U ′b(p∗)

⇐⇒ (r + λ)Ub(p∗) = λU
∗
(p∗)

I From ODEs, we obtain two branches V ct(p) and V ct(p) that
define the Value function for contradictory evidence.



Characterizing the cut-off p∗

Lemma

p∗ =
uBb

uAa + uBb
, Vcf (p∗) =

λU
∗
(p∗)

2r + λ
, and V ′cf (p∗) =

λU
∗′

(p∗)

r + λ

Proof.
At p∗ the DM is indifferent between a = 1 and a = 0:

I Optimality of a = 1
2 implies Vcf (p∗) = λU

∗
(p∗)

2r+λ .

I From ODEs, we obtain two branches V cf (p) and V cf (p).

I V ′cf (p∗) = V
′
cf (p∗) = λU

∗′
(p∗)

2r+λ pins down p∗.



When is (some) Information Acquisition Optimal?

Proposition

Fix the parameters uAa , u
B
a , u

A
b , u

B
b .

I If uAa u
B
b < uBa u

A
b (“mistakes are very costly”), then some

experimentation (contradictory) is optimal.
I Otherwise, the experimentation is valuable if

θ :=
r

λ
<
(
uAa − uAb

)
max

{ (
uBb − uBa

)
uAa u

B
b − uBa u

A
b

,
1

uAb − uBb

}



When is (some) Confirmatory Evidence Optimal?

Proposition

I If uAb , u
B
a are negative and sufficiently large in absolute values

(“mistakes are sufficiently costly”), then a confirmation regions
exists.

I Otherwise, there exists θ > 0 such that a confirmatory region
exists if

θ =
r

λ
< θ.

Proof.
The condition is obtained from

Vcf (p∗) > V ct(p
∗)



General Model: Rich signals

Continuum of signals

Signals indexed by λ ∈ [0, 1]:

I Given λ ∈ [0, 1], two states are learned (conclusively) at
Poisson arrival rates of (λA, λB) = (λ, Γ(λ))

I Γ(λ) is decreasing and concave, symmetric
(Γ(λ) = 1− Γ(1− λ)), and Γ(1) = 0, Γ(0) = 1, Γ(γ) = γ, for
some γ > 1/2.

I The DM picks λ ∈ (0, 1) at each moment. Absent any news,
the belief is updated via

ṗ = −(λ− Γ(λ))p(1− p).



Example for Richer Set of News Sources
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α > 0 avoids Γ′(0) = 0 and Γ′(1) = −∞



Sketch of Analysis

I HJB can be written as:

(r + λ)V (p)

= max
λ∈[0,1]

{
uAa λp + uBb Γ(λ)(1− p)− (λp + Γ(λ)(1− p))V (p)

− (λ− Γ(λ))p(1− p)V ′(p)
}
,

I The overall structure of the optimal policy is preserved:

|— —
b

p∗
contradictory︷ ︸︸ ︷
←−
λ=1

p∗∗ ←−
λ>γ

p

confirmatory︷ ︸︸ ︷
−→−→
λ<γ,rising

p∗ ←−←−
λ>γ,rising

p̄

contradictory︷ ︸︸ ︷
−→
λ<γ

p̄∗∗ −→
λ=0

p̄∗ — —
a
|



Example Rich News: Confirmatory and Contradictory
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2 , u

A
a = uBb = 1, uBa = uAb = −1

2 ,α = 1
4)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

U(p)

V(p)

λ(p)



Example Rich News: Confirmatory and Contradictory

(Parameters: r = 1
2 , u

A
a = uBb = 1, uBa = uAb = −1

2 ,α = 1
4)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

U(p)

V(p)

λ(p)

Γ(λ(p))



Example Rich News: Only Contradictory
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Example Rich News: Only Contradictory
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General Model: Non-conclusive signals with flow cost

Posterior choice model
A signal, or news source, is indexed by a posterior q ∈ [0, 1].

I Any news q arrives at the Poisson arrival rate of λ > 0.
I Once news q arrives, it becomes the DM’s posterior belief.
I The DM picks q at cost c(q, p) given current belief p.
I c(p, p) = cq(p, p) = 0, cqq(·, ·) ≥ 0, cqp(·, ·) ≤ 0.

cqqp(q, p) = 0.
I Special case: Entropy. If the cost is mutual information on the

experiment, the flow cost becomes
c(q, p) = µD(q||p) = µ(q ln(q/p) + (1−q) ln(1−q)/(1−p)).

I Absent news, the belief updates according to: ṗ = −λ(q − p).



General Model: Non-conclusive signals with flow cost

Benchmark: r = 0

I Closed form solution, characterized by two posteriors:
q+ > p̂ > q−, such that, an immediate action is chosen for
p ≤ q− and for q ≥ p+, and some mix of q− and q+ is chosen
for p ∈ [q−, q+].

I The outcome coincides with the RI type discrete choice
prediction (e.g., Matejka-McKay (2015)). [An implication of
the “chain rule” property of the entropy; but note it applies to
“a little” beyond the entropy model.]

I The optimal dynamic attention path not uniquely pinned
down: contradictory, confirmatory, or stationary all consistent
with optimal decision rule.

I Away from r = 0, we have a unique optimal decision. ⇒
Sequential decision foundation for the RI choice.



General Model: Non-conclusive signals with flow cost

General Case: r > 0

I The HJB equation:

(r + λ)V (p) = max
q

[
λU(q)− c(q, p)− λ(q − p)V ′(p)

]
,

I The RHS has two local optima: q+(p) > p̂ > q−(p).
I The structure of the optimal policy is same as before:

V (p) = max{U(p),Vct(p),Vcf (p)}, where
I Vct(p) = value of contradictory strategy: Choose q+(p) > p̂

for low p and q−(p) for high p.
I Vcf (p) = value of confirmatory strategy: Choose q+(p) > p̂

for high p and q−(p) for low p.

I For the entropy model, the confirmatory region never arises in
all numerical exercises.



Example: Symmetric Payoffs
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Example: Asymmetrically Risky Actions

(Parameters: λ = µ = 1, r = 0.8, uAa = 5, uBb = 2, uBa = uAb = 0)
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Summary

I In a broad set of Poisson bandit signal environments, the
ptimal learning strategy combines

I immediate action
I contradictory learning
I confirmatory learning

I Uncertain DM tends to seek confirmatory evidence.
I Moderately certain DM becomes “skeptical” and seeks

contradictory evidence.
I Extremely certain DM takes immediate action.



Extensions

I Response time?!?: Yet to be explored.
I More states/actions

I What is the multi-dimensional equivalent of “contradictory
evidence”?

I Uncertain state may involve different values of λ.

I Applications...
I Experiment... (we have worked out a finite-period version of

our model.)


