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1 Introduction

Economists are often interested in estimating and making inference about the parameter β in the linear

model

y1 = y2β +Xγ + u (1.01)

with N observations, where y1, y2 ∈ RN are endogenous variables, X is a N × l matrix of exogenous

regressors, and u ∈ RN is a vector of normally distributed i.i.d. random error terms with variance σ2
u. We

let the subscript i denote the ith observation.

A commonly used estimator of β is the ordinary least squares (OLS) estimator β̂OLS :

β̂OLS = (y′2y2)
−1
y′2y1 (1.02)

For β̂OLS to be consistent, it is necessary that y2 is orthogonal to the error term, that is E (y2iui) = 0 for

any observation i. In the case of 1.0.1, β̂OLS is not a consistent estimator for β since y2 is assumed to be

endogenous.

One way to overcome the problem of an endogenous regressor is the use of instrumental variables. A

matrix of instrumental variables for 1.0.1 is a N × k matrix Z that is orthogonal to u and correlated with

y2. Given valid instruments Z, a commonly used estimator of β is the 2SLS estimator

β̂2SLS =
y′⊥2 Pzy

⊥
1

y′⊥2 Pzy⊥2
(1.03)

where PA = A (A′A)
−1
A′ is the projection matrix onto the column space of A and B⊥ = (IN − PX)B,

is the projection of B onto the space orthogonal to the column space of X. It can be shown that if the

instruments are strongly correlated with the endogenous regressor the distribution of β̂2SLS nonstandard,

even in large samples [Staiger and Stock, 1997]. This affects the distribution of any statistic used to do to

inference, such as that of the t-statistic based on the two-stage least squares (2SLS) estimator,

t2SLS =

(
β̂2SLS − β0

)
σ̂u

·
(
y′⊥2 PZy

⊥
2 − κω22

)1/2
(1.04)

where σ̂u is a consistent estimator of σu. Under strong instruments, the distribution of the t2SLS is close

to standard normal in large samples. When the instrumental variables and the endogenous variable are

weakly correlated, properties of the normal distribution can not be used to conduct inference. In particular,
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commonly used statistical tests, such as the Wald test, exhibit size distortion under weak instruments.

Particular attention has been paid to tests with correct size under weak instruments. Moreira [2003]

proposes a conditional framework whereby the standard critical values used for hypothesis testing are replaced

by critical values that are a function of the data. By conditioning on the weakness of the instruments, critical

values that correct for the size distortion are derived from the conditional distribution of the test statistic.

Andrews et al. [2006a] examined the conditional likelihood ratio test (CLR) proposed by Moreira [2003] and

found it had correct size as well as good power compared to the Lagrange multiplier and the Anderson-Rubin

tests. Andrews et al. [2007] numerically investigated the properties of the conditional Wald test based on

four different estimators and found that the conditional Wald has correct size. However, the conditional

Wald is biased weak instruments. That is, the test often rejects the null hypothesis with a higher probability

under the null than under some alternatives. The goal of this paper is to introduce a methodology that

corrects for the bias of the conditional Wald test in the presence of weak instruments.

Section 1.1 introduces the structural IV model and introduces the k-class estimators of Nagar [1959].

Section 2 gives a precise but brief overview of hypothesis testing and unbiasedness. Section 2.1 describes

the conditional framework and how it applies to the IV model. Section 2.2 demonstrates numerically the

asymmetry of the distribution of t2SLS , both unconditional and conditional, under weak interments. Section

3 introduces the critical values that will be central to the unbiased test. Section 3.1 provides the theoretical

justification for the unbiasedness of the test and develops an algorithm to find the desired critical values.

Section 3.2 the unbiased conditional t-test. Section 3.3 finds confidence intervals based on t2SLS and inves-

tigates the behavior of the confidence intervals under a variety of parameters. Section 4 provides numerical

power results for the conditional t-test and compares it to various other tests. Section 5 concludes the paper.

Section 6 provides a comprehensive appendix of supplementary material. Section 6.1 provides the deriva-

tion of the t-statistic in a form required by the conditional framework. Sections 6.2 and 6.3 provide power

curves for the conditional t-test under every parameter combination considered. Section 6.4 gives proofs to

the theoretical results stated in the paper. Finally, section 6.5 provides a URL for all code and other files

necessary to replicate all numerical results and graphs in the paper.

1.1 The Structural IV Model

Following Andrews et al. [2006a], we consider the structural equation equation for a single endogenous
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regressor

y1 = y2β +Xγ + u (1.1.1)

y2 = Zπ +Xξ + v2 (1.1.2)

where y1, y2 ∈ RN are endogenous variables, X is a N × l matrix of exogenous regressors, and Z as a N × k

matrix of instrumental variables. We assume that the exogenous regressors X and the instruments Z are

orthogonal, since if this were not the case, we could always redefine the instruments to be a projection of Z

onto the space orthogonal to X. The corresponding reduced form model, written in matrix notation, is

Y = Zπa′ +Xη + V , (1.1.3)

where

a =

 β0

1

 and η = [γ, ξ]

are parameters and

Y = [y1, y2] and V = [v1, v2]

are random matrices. V is assumed to have a multivariate normal distribution N (0, IN ⊗ Ω), where

Ω =

 ω11 ω21

ω12 ω22

 . (1.1.4)

Since Ω can be consistently estimated (even when instruments are weak) by

Ω̂ =
Y ′Z (Z ′Z)

−1
Z ′Y

n− k − l
, (1.1.5)

[Andrews et al., 2006b] we assume that Ω is known. We define

ρ =
ω12√
ω11ω22

(1.1.6)

to be the correlation between the reduced form errors; that is, ρ measures the level of endogeneity of y2.

This paper investigates the two-sided hypothesis test H0 : β = β0 against H1 : β 6= β0 under weak
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instruments using k-class estimators of β. The k-class of estimators of β are defined by

β̂κ =
(y′2Pzy1 − κω22)

(y′2Pzy2 − κω12)
(1.1.7)

where κ is a parameter that dictates the variety of k-class estimator. We focus on three k-class estimators:

two-stage least squares (2SLS), limited information maximum likelihood (LIML), and a modified LIML

proposed by Fuller [1977] (FULL). The corresponding κ for each estimator is given by

κ2SLS = 0

κLIML = The smallest root of f (κ) = det (Y ′PZY − κΩ) = 0 (1.1.8)

κFULL = (N − k) (1 + κLIML/N−k) .

2 Hypothesis Testing and Unbiasedness

In order to make inference about the parameters of a model (β, θ) ∈ Rm+1, where β ∈ R is a parameter

of interest and θ ∈ Rm is a vector of nuisance parameters, economists generally rely on hypothesis testing.

Typically one will test a null hypothesis

H0 : β = β0

against an alternative hypothesis

H1 : β 6= β0.

This is equivalent to testing

H0 : (β, θ) ∈ B0 = {β0} × Rm

against

H1 : (β, θ) ∈ B1 = (R \ {β0})× Rm

We call B0 the null set and B1 the alternative set.

A test φ (X) is a function of the data X such that it takes on the value 1 to indicate rejection of the

null hypothesis and the value 0 to indicate failure to reject the null hypothesis. Under the Neyman-Pearson

framework, we fix the probability of rejecting the null hypothesis at a level α and seek a test that maximizes

the probability of rejecting the null hypothesis when an alternative is true. The probability that a test will

reject the null when β is true is called the power of the test, Eβφ (X). A test φ for which the power function
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(the power of the test as a function of β) Eβφ (X) satisfies

Eβφ (X) ≤ α if (β, θ1, . . . , θm) ∈ B0

Eβφ (X) ≥ α if (β, θ1, . . . , θm) ∈ B1

is said to be unbiased [Lehmann and Romano, 2005]. If a test to is biased then there exist alternatives where

the test is more likely to accept the null than when the null is true. This is clearly an undesirable property,

hence it is important that a test be unbiased when making inference about a parameter β.

2.1 The Conditioning Argument

The goal of the conditional framework is to control for the effect of π, which dictates the strength

of the instruments. By Andrews et al. [2006a] Lemma 1e, Z ′Y is a sufficient statistic for (β, π′)
′, which

eliminates the nuisance parameter η from the problem. Following Moreira [2003], we establish the one-to-

one transformation of Z ′Y :

S = (Z ′Z)
−1/2

Z ′Y b0 · (b′0Ωb0)
−1/2

(2.1.2)

T = (Z ′Z)
−1/2

Z ′Y Ωa0 · (a′0Ωa0)
−1/2

(2.1.3)

where

a0 =

 β0

1

 and b0 =

 1

−β0

 ,

and define

Q =

 S′S S′T

T ′S T ′T

 =

 QS QST

QST QT

 (2.1.4)

where Q has a non-central Wishart distribution. The distribution of Q depends only on π through the

nonnegative scalar

λ = π′Z ′Zπ (2.1.5)

[Andrews et al., 2006a] that measures the strength of the instruments. The parameter λ has a direct

connection with the first stage F-test statistic used to test for weak instruments. Define

λ̂ = π̂′Z ′Zπ̂ (2.1.6)
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where π̂ is the OLS estimate of π obtained by regressing y2 on Z. The first stage F-test statistic is defined

by

F =
λ̂

k · ω̂22
(2.1.7)

where ω̂22 is a consistent estimator for the variance of the error term v2. Staiger and Stock [1997] proposed

the rule-of-thumb that a value of the first stage F-test statistic that is less than 10 indicates that instruments

are weak.

Because π represents the effect instruments have on the exogenous regressor, π determines the weakness

of the instruments. The null rejection probability of conventional tests depend on π. We can eliminate π

from the problem by establishing that the statistic QT is sufficient for λ. Hence by conditioning on QT = qT ,

λ is eliminated, which in turn eliminates π from the problem. By conditioning on qT , which is a function of

the data, we can establish distributional properties of the parameter of interest β given the level of weakness,

and thus make inference.

2.2 Conditional t-Statistics

Staiger and Stock [1997] demonstrated numerically the distortion that occurs under weak instruments

to the asymptotic probability distribution functions of the t-statistic based on the 2SLS estimator, t2SLS .

The distribution of t2SLS is asymmetric when instruments are weak. For fixed parameters ω11 = ω22 = 1,

ρ = ω12 = ω21 = 0.5 and k = 4, we set four values of λ: 0.5, 4, 16, and 64, where λ = 0.5 represents

weak instruments and λ = 64 represents strong instruments. FIGURE 2.2.1 displays the sample probability

distribution of t2SLS as instruments get progressively stronger. The sample probability distributions were

generated from 1, 000, 000 simulated values of t2SLS each.
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FIGURE 2.2.1: UNCONDITIONAL PDFS OF THE t2SLS UNDER WEAK INSTRUMENTS
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To illustrate this distortion in the conditional framework, this section contains numerically approxima-

tions of the probability distribution function of the t2SLS given a value of qT . By writing t2SLS in terms of the

sufficient statistics (QST , QS , QT ), under the null, given QT = qT , values of QST and QS are randomly gen-

erated to produce simulated t2SLS statistics conditional on qT . The parameters are σ = 1, ω11 = ω22 = 1,

ρ = ω12 = ω21 = 0.5 and k = 4. We set four values of qT , defined by ln (qT/k) = 0, 2, 4, and 8, where

ln (qT/k) = 0 represents weak instruments and ln (qT/k) = 8 represents strong instruments . FIGURE 2.2.2

displays the sample probability distribution of t2SLS as instruments get progressively stronger. The sample

probability distributions were generated from 1, 000, 000 simulated values of t2SLS each.
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FIGURE 2.2.2: CONDITIONAL PDFS OF THE t2SLS UNDER WEAK INSTRUMENTS
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FIGURE 2.2.1A shows that under weak instruments the pdf of the t2SLS statistic, even when conditioned

on qT , is asymmetric. As instruments get stronger, the pdf of the statistic tends towards that of the standard

normal. Eventually when instruments are strong, the pdf of the statistic is almost perfectly that of a standard

normal.

3 Critical Values

The primary goal of this paper is to find an unbiased two-sided test based on the k-class of estimators

that is robust to weak instruments. To accomplish this we require necessary and sufficient conditions for

unbiasedness. Following Andrews et al. [2006a], we consider the class of tests that are invariant to orthonor-

mal transformations of the instrument variables. We consider the invariant test φ (QS , LM,QT ), where
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LM = QST/
√
QT is the test statistic of the one-sided Lagrange multiplier test of [Breusch and Pagan, 1980].

Andrews et al. [2006b] show that the two conditions

Eβ0

(
φ (QS , LM,QT )

∣∣∣QT = qT

)
= α (3.0.1)

Eβ0

(
φ (QS , LM,QT ) · LM

∣∣∣QT = qT

)
= 0, (3.0.2)

for almost all qT , are necessary for the invariant test to be unbiased with size α. A test that satisfies condition

3.0.1 is said to be similar. Condition 3.0.2 indicates that the derivative of the power function with respect

to β under the null hypothesis is zero; a necessary condition for the power function of the of test to achieve

its minimum at β0. Given qT , these conditions can be written as

Eβ0 (φ (QS , LM, qT )) = α (3.0.3)

Eβ0
(φ (QS , LM, qT ) · LM) = 0 . (3.0.4)

For ease of notation, we can write these conditions in terms of acceptance

Eβ0
(ϕ (QS , LM, qT )) = 1− α (3.0.6)

Eβ0
(ϕ (QS , LM, qT ) · LM) = 0 (3.0.7)

where ϕ (QS , LM, qT ) = 1− φ (QS , LM, qT ).

ASSUMPTION 3.0.1: Given qT and a statistic based on a k-class estimator ψκ (QS , LM, qT ), there exist

unique values C1 (qT ) , C2 (qT ) ∈ R such that the test

ϕ (QS , LM, qT ) =


1 when C1 (qT ) < ψκ (QS , LM, qT ) < C2 (qT )

0 when C1 (qT ) > ψκ (QS , LM, qT ) or C2 (qT ) < ψκ (QS , LM, qT )

, (3.0.8)

satisfies 3.0.6 and 3.0.7.

This Assumption 3.0.1 establishes the test for which 3.0.6 and 3.0.7 are sufficient conditions for unbiased-

ness. Because the joint distribution of the sufficient statistics (QS , LM,QT ) are in the exponential family,

by Lehmann and Romano [2005] Section 4.2, Eβ (ϕ (QS , LM, qT )) has a maximum at β0 and is strictly de-

creasing as β tends away from β0 in either direction. Then the test φ (QS , LM, qT ) = 1− ϕ (QS , LM, qT ) is

necessarily unbiased since it reaches a minimum at β0 and is strictly increasing as β tends away from β0 in
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either direction. In sum, by Assumption 3.0.1, an unbiased (1− α) % confidence interval for ψκ (QS , LM, qT )

under the null is defined by the critical values C1 (qT ) and C2 (qT ) such that

Eβ0

(
I {C1 (qT ) < ψκ (QS , LM, qT ) < C2 (qT )}

)
= 1− α (3.0.9)

Eβ0

(
I {C1 (qT ) < ψκ (QS , LM, qT ) < C2 (qT )}LM

)
= 0 (3.0.10)

The goal is then to find a suitable statistic ψκ and the critical values C1 (qT ) and C2 (qT ) in order to

implement the test in practice. A possible candidate statistic ψκ is the conditional Wald statistic, such as

the square of the t2SLS constructed in Section 2.2. Because we are testing a two-sided hypothesis, it is

natural to expect that we will reject for large values of the Wald statistic. In such a case, finding C1 (qT )

and C2 (qT ) that satisfy 3.0.9 is straightforward, namely C1 (qT ) = 0 and C2 (qT ) the 1 − α quantile of the

distribution of the conditional Wald statistic given qT . However these values of C1 (qT ) and C2 (qT ) do not

satisfy 3.0.10 in general. The problem is more severe when we consider the asymmetry of the distribution of

the conditional t-statistic when instruments are weak.

3.1 An Algorithm for Finding Critical Values

Using the framework of the previous section, we develop an algorithm to approximate the critical values

C1 (qT ) and C2 (qT ) that give an unbiased (1− α) % confidence interval for the t-statistic based on the k-class

estimators, tκ. We define a statistic testing H0 : β = β0 against H1 : β 6= β0: a tκ-statistic under the null

conditioned on qT , written in terms of QS and QST 1. Since LM = QST/
√
QT we can write the conditional

tκ-statistic as a function of QS and LM . Under the null, the distributions of LM and QS , respectively, are

known,

LM ∼ N (0, 1)

QS = LM2 +Qk−1, where Qk−1 ∼ χ2
k−1 ,

given qT [Moreira, 2003]. Thus an unbiased (1− α) % confidence interval under the null based on tκ (QS , LM, qT )

would be defined by C1 (qT ) and C2 (qT ), such that

Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
= 1− α (3.1.2)

Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)
= 0 (3.1.3)

1Derivation of the conditional t-statistic can be found in Appendix 6.1.
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Then by Assumption 3.0.1, C1 (qT ) and C2 (qT ) are defined by the unique solution to the minimization

problem

min
(C1(qT ),C2(qT ))

∣∣∣Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)∣∣∣
such that Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
= 1− α

(3.1.4)

Because C1 (qT ) and C2 (qT ) can not be calculated directly, we rely on finding consistent estimators. The

following results provide a theoretical basis for estimating C1 (qT ) and C2 (qT ).

LEMMA 3.1.1: The left hand sides of 3.1.2 and 3.1.3 exist.

LEMMA 3.1.2:

a) The function g (C1 (qT ) , C2 (qT )) = Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
is a continuous

function of (C1 (qT ) , C2 (qT )).

b) The function g∗ (C1 (qT ) , C2 (qT )) = Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)
is a contin-

uous function of (C1 (qT ) , C2 (qT )).

THEOREM 3.1.3:

a) Given an i.i.d. sequence of random variables
{
QjS , LM

j
}
,

1

J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

p−→ Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)

and

1

J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
p−→ Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
.

b)

plim
J→∞

argmin
(C1(qT ),C2(qT ))

∣∣∣ 1
J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α
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= argmin
(C1(qT ),C2(qT ))

plim
J→∞

∣∣∣ 1
J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α .

DEFINITION 3.1.4: Given qT and a random i.i.d. sample of J observations of LM and QS, let CJ1 (qT )

and CJ2 (qT ) be defined by

(
CJ1 (qT ) , CJ2 (qT )

)
= argmin

(C1(qT ),C2(qT ))

∣∣∣ 1
J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α .

(3.1.5)

COROLLARY 3.1.5:

(
CJ1 (qT ) , CJ2 (qT )

)
p−→
(
C1 (qT ) , C2 (qT )

)
as J −→∞

where
(
C1 (qT ) , C2 (qT )

)
is the is the unique solution the minimization problem 3.1.4.

Corollary 3.1.5 tells us that CJ1 (qT ) and CJ2 (qT ) are consistent approximations of the respective critical

values C1 (qT ) and C2 (qT ).

By generating a sample of J values of QS and LM , we define the vectors QS =
(
Q1
S , . . . , Q

J
S

)
and

LM =
(
LM1, . . . , LMJ

)
of respective values. Let

Tκ (QS,LM; qT ) =
(
tκ
(
Q1
S , LM

1; qT
)
, . . . , tκ

(
QJS , LM

J ; qT
))

(3.1.6)

be a vector of J tκ-statistics and let Qz (Tκ (QS,LM, qT )) be the zth quantile of Tκ (QS,LM, qT ). Then

to control for the constraint in 3.1.5 we let

CJ1 (qT ) = Qx (Tκ (QS,LM, qT )) . (3.1.7)

Then for the constraint in 3.1.5 to hold, it must be the case that

CJ2 (qT ) = Q(1−α)+x (Tκ (QS,LM, qT )) (3.1.8)
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since by the definition of Qz,

1

J

J∑
j=1

I
{
Qx (Tκ (QS,LM, qT )) < tκ

(
QjS , LM

j , qT

)
< Q(1−α)+x (Tκ (QS,LM, qT ))

}
= 1− α (3.1.9)

for any x ∈ [0, α]. Hence, approximating the desired C1 (qT ) and C2 (qT ) is equivalent to finding the x that

solves the constrained minimization problem

min
x∈[0,α]

∣∣∣∣ 1J
J∑
j=1

I
{
Qx (Tκ (QS,LM, qT )) < tκ

(
QjS , LM

j , qT

)
< Q(1−α)+x (Tκ (QS,LM, qT ))

}
LM j

∣∣∣∣,
a function of one bounded variable on a compact set2.

3.2 Constructing the Conditional t-Test

Under strong instruments, conducting a t-test with a k-class estimator testing H0 : β = β0 against

H1 : β 6= β0 proceeds in the following manner: given data (Y,Z), and assuming Ω is known, we construct a

t-statistic

tκ (Y, Z) =
1

σ̂u (Y,Z)

(
β̂κ (Y, Z)− β0

)√
y′2PZy2 − κ (Y, Z)ω22 (3.2.1)

where σ̂u (Y, Z) is a consistent estimate of σu. Given a size α and critical value Cα/2, at the test is defined

by

ϕt (Y, Z) = 1− I
(
−Cα/2 < tκ (Y,Z) < Cα/2

)
(3.2.2)

where 1 indicates rejection of the null and 0 indicates failure to reject.

Under weak instruments, σu is not consistently estimable in general. As a result, the distribution of the

t-statistic using a standard estimator for σu can differ significantly from the distribution when σu is known.

Figures 3.2.1, 3.2.2, and 3.2.3 illustrates how estimating σu affects the distribution of the t-statistic based

on the 2SLS, FULL, and LIML estimators, respectively. Each figure represents a sample distribution

generated from 1, 000, 000 simulated values of tκ with ρ = 0.95 and k = 20, and λ/k ranging over 0.5, 1, and

4. In each figure, panels A, B, and C give the distribution when σu is unknown and estimated by

σ̂u =

√[
1,−β̂κ

]
Ω
[
1,−β̂κ

]′
.

Panels D, E, and F give the distribution when σu is known, which in this case is σu = 1.
2Optimizing this function is straightforward with any suitable numerical package. Using the fminbnd function in Matlab

with α = 0.05 and a sample of 100, 000 observations, finding a minimum takes less than 1 second.
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FIGURE 3.2.1: PDFS OF THE t2SLS WITH σu KNOWN AND σu UNKNOWN
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FIGURE 3.2.1A

ρ = 0.95, k = 20, λ =0.5, σ  Unknown
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Comparing panels A to D, B to E, and C to F in figure 3.2.1, it appears that there is some difference

between the pdfs. However, the general shapes are not dramatically different.

FIGURE 3.2.2: PDFS OF THE tFULL WITH σu KNOWN AND σu UNKNOWN
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Comparing panels A to D, B to E, and C to F in figure 3.2.2, there is a greater difference in the shape of

the pdfs than in the case of t2SLS . The difference is most dramatic when instruments are weakest, in panels

A and D.

FIGURE 3.2.3: PDFS OF THE tLIML WITH σu KNOWN AND σu UNKNOWN
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Comparing panels A to D, B to E, and C to F in figure 3.2.3, the shapes of the pdfs are markedly

different, especially under weaker instruments. Of particular note is that the pdf of tLIML is the only

distribution that remains symmetric when σu is known.

Ideally we would like to know the true value of σu and thus avoid the distortion demonstrated above, but

in practice is this not possible. However, we can avoid estimating σu by making use of the form that critical
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values take in the conditional framework. To do this we first assume that the true value of σu is known.

Then given data (Y,Z), and assuming Ω is known, the tκ-statistic is given by

tκ (Y, Z) =
1

σu

(
β̂κ (Y,Z)− β0

)√
y′2PZy2 − κ (Y,Z)ω22 . (3.2.3)

Letting

t̃κ (Y, Z) =
(
β̂κ (Y,Z)− β0

)√
y′2PZy2 − κ (Y,Z)ω22 (3.2.4)

and noting that t̃κ (Y, Z) can be written as a function of QS , LM , and QT , we get that

tκ (QS , LM,QT ) =
1

σu
t̃κ (QS , LM,QT ) . (3.2.5)

Conditioning on qT , we apply the algorithm from section 3.1 to find the critical values

C1 (qT ) = t′κ (Q′S , LM
′, qT )

C2 (qT ) = t′′κ (Q′′S , LM
′′, qT )

(3.2.6)

where (Q′S , LM
′) and (Q′′S , LM

′′) are the simulated values of QS and LM that correspond to C1 (qT ) and

C2 (qT ), respectively. Thus the test is given by

ϕt (Y, Z) = 1− I
(
t′κ (Q′S , LM

′, qT ) < tκ (Y, Z) < t′′κ (Q′′S , LM
′′, qT )

)
. (3.2.7)

By 3.2.3, 3.2.4, and 3.2.6,

ϕt (Y,Z) = 1− I
( 1

σu
t̃′κ (Q′S , LM

′, qT ) <
1

σu
t̃κ (Y, Z) <

1

σu
t̃′′κ (Q′′S , LM

′′, qT )
)
. (3.2.8)

Since σu is a positive scalar,

ϕt (Y, Z) = 1− I
(
t̃′κ (Q′S , LM

′, qT ) < t̃κ (Y, Z) < t̃′′κ (Q′′S , LM
′′, qT )

)
. (3.2.9)

Hence σu is eliminated from the test.
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3.3 Confidence Intervals

This section employs the algorithm established in Section 3.1 to produce 95% confidence intervals for

the t2SLS conditioned on different values of qT and fixing other parameters σ = 1, k = {1, 2, 5, 10, 20} and

ρ = {0.2, 0.5, 0.95}. The critical values were calculated by generating a sample of J = 1, 000, 000. ln (qT/k)

can be seen as a measurement of the weakness of the instruments where −6 is very weak and and 6 is very

strong.

TABLE 3.3A: 95% CONFIDENCE INTERVALS FOR t2SLS WITH ρ = 0.2

ln (qT/k) k = 1 k = 2 k = 5 k = 10 k = 20

−6 (−0.24, 1.96) (−0.30, 2.43) (0.17, 3.29) (1.58, 4.38) (2.67, 5.58)

−5 (−0.40, 1.97) (−0.31, 2.46) (0.27, 3.27) (1.36, 4.27) (2.57, 5.51)

−4 (−0.66, 1.96) (−0.57, 2.43) (0.17, 3.24) (1.01, 4.08) (2.14, 5.22)

−3 (−1.09, 1.96) (−0.94, 2.36) (−0.24, 3.04) (0.44, 3.74) (1.34, 4.62)

−2 (−1.80, 1.96) (−1.31, 2.28) (−0.80, 2.76) (−0.31, 3.23) (0.35, 3.89)

−1 (−1.96, 1.96) (−1.63, 2.16) (−1.27, 2.48) (−0.93, 2.81) (−0.50, 3.24)

0 (−1.96, 1.96) (−1.79, 2.09) (−1.56, 2.30) (−1.35, 2.50) (−1.07, 2.78)

1 (−1.96, 1.96) (−1.86, 2.04) (−1.72, 2.18) (−1.60, 2.30) (−1.41, 2.48)

2 (−1.96, 1.96) (−1.90, 2.01) (−1.82, 2.09) (−1.74, 2.17) (−1.63, 2.28)

3 (−1.96, 1.96) (−1.92, 1.99) (−1.88, 2.04) (−1.83, 2.09) (−1.76, 2.16)

4 (−1.96, 1.96) (−1.94, 1.98) (−1.91, 2.01) (−1.88, 2.04) (−1.84, 2.07)

5 (−1.96, 1.96) (−1.95, 1.97) (−1.93, 1.98) (−1.92, 2) (−1.89, 2.03)

6 (−1.96, 1.96) (−1.95, 1.96) (−1.95, 1.97) (−1.93, 1.99) (−1.93, 2.00)

17



TABLE 3.3.2B: 95% CONFIDENCE INTERVALS FOR t2SLS WITH ρ = 0.5

ln (qT/k) k = 1 k = 2 k = 5 k = 10 k = 20

−6 (−0.09, 1.96) (0.16, 2.61) (0.95, 3.69) (1.73, 4.46) (3.22, 6.20)

−5 (−0.14, 1.96) (0.23, 2.91) (0.50, 3.34) (1.22, 4.27) (2.92, 5.71)

−4 (−0.23, 1.97) (−0.22, 2.44) (0.81, 3.58) (1.69, 4.50) (2.44, 5.54)

−3 (−0.38, 1.98) (−0.27, 2.47) (0.42, 3.32) (1.44, 4.33) (2.62, 5.54)

−2 (−0.63, 1.97) (−0.57, 2.43) (0.20, 3.25) (1.04, 4.09) (2.17, 5.24)

−1 (−1.05, 1.96) (−0.91, 2.37) (−0.21, 3.06) (0.48, 3.75) (1.40, 4.66)

0 (−1.73, 1.96) (−1.28, 2.3) (−0.76, 2.77) (−0.26, 3.27) (0.43, 3.96)

1 (−1.96, 1.96) (−1.61, 2.18) (−1.25, 2.5) (−0.89, 2.84) (−0.44, 3.29)

2 (−1.96, 1.96) (−1.78, 2.09) (−1.55, 2.31) (−1.32, 2.52) (−1.03, 2.81)

3 (−1.96, 1.96) (−1.85, 2.05) (−1.71, 2.18) (−1.58, 2.31) (−1.4, 2.49)

4 (−1.96, 1.96) (−1.90, 2.02) (−1.81, 2.10) (−1.73, 2.17) (−1.62, 2.28)

5 (−1.96, 1.97) (−1.92, 1.99) (−1.88, 2.04) (−1.83, 2.09) (−1.76, 2.16)

6 (−1.97, 1.95) (−1.94, 1.98) (−1.91, 2.01) (−1.87, 2.04) (−1.84, 2.08)

TABLE 3.3.2C: 95% CONFIDENCE INTERVALS FOR t2SLS WITH ρ = 0.95

ln (qT/k) k = 1 k = 2 k = 5 k = 10 k = 20

−6 (0.03, 2.19) (0.20, 2.65) (0.87, 3.52) (1.84, 4.58) (3.21, 6.06)

−5 (0.02, 2.17) (0.21, 2.67) (0.84, 3.49) (1.80, 4.53) (2.90, 5.69)

−4 (0.05, 2.68) (0.26, 2.89) (0.95, 3.68) (1.91, 4.77) (3.19, 6.03)

−3 (−0.07, 1.96) (0.16, 2.59) (0.98, 3.78) (1.66, 4.40) (2.79, 5.65)

−2 (−0.11, 1.99) (0.22, 2.82) (0.86, 3.54) (1.54, 4.34) (3.03, 5.80)

−1 (−0.20, 1.96) (−0.16, 2.45) (0.68, 3.41) (1.52, 4.33) (2.38, 5.55)

0 (−0.33, 1.96) (−0.34, 2.43) (0.49, 3.34) (1.50, 4.35) (2.66, 5.56)

1 (−0.54, 1.96) (−0.58, 2.41) (0.35, 3.32) (1.17, 4.17) (2.29, 5.32)

2 (−0.89, 1.96) (−0.78, 2.40) (−0.04, 3.15) (0.70, 3.90) (1.69, 4.88)

3 (−1.47, 1.96) (−1.17, 2.32) (−0.56, 2.88) (−0.02, 3.42) (0.73, 4.16)

4 (−1.96, 1.96) (−1.53, 2.21) (−1.11, 2.58) (−0.71, 2.96) (−0.19, 3.49)

5 (−1.96, 1.96) (−1.74, 2.12) (−1.47, 2.36) (−1.21, 2.61) (−0.87, 2.94)

6 (−1.96, 1.96) (−1.85, 2.05) (−1.67, 2.21) (−1.51, 2.37) (−1.30, 2.58)
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As expected, when instruments become stronger the 95% confidence intervals tend to (−1.96, 1.96), that

of the standard normal distribution. We also note that with more instruments, such as k = 20, the distortion

of the confidence intervals persists for “longer” in the sense that instruments have to be stronger to converge

to (−1.96, 1.96) than when there are less instruments. Similarly when ρ is larger, such as ρ = 0.95, we find

a similar effect.

4 Power of the Conditional t-Test

This section compares the power properties of the conditional tκ-test with other known tests that are

robust to weak instrumental variables, testing H0 : β = β0 against local alternatives. Following Andrews

et al. [2006a] the local neighborhood we look at is 1/
√
λ. Results are computed for 36 different parameter

combinations of ρ, k, and λ/k. In particular we look at ρ = 0.2, 0.5, and 0.95; k = 2, 5, and 20; and λ/k = 0.5,

1, 4, and 16, noting that the smaller is λ/k, the weaker the instruments, and the larger is λ/k, the stronger

the instruments. Following Andrews et al. [2007], without loss, we set β0 = 0 and

Ω =

 1 ρ

ρ 1

 .

The power function for each parameter combination has been computed at 25 evenly spaced points from

β/
√
λ = −6 to β/

√
λ = 6. Results are based on 1, 000 Monte Carlo draws. The size of the test in each case

is α = 0.05. The critical values for the conditional t-test and conditional Wald test were calculated based

on 100, 000 simulations of QS and LM . Evaluation of the CLR was implemented using p-values using the

algorithm described in Andrews et al. [2006a].

4.1 Power Comparison of the 2SLS Conditional t-Test with the 2SLS Condi-

tional Wald

This section compares the power of the conditional t-test against that of the conditional Wald. Figure

4.1.1 gives power results for ρ = 0.5 and k = 5. Complete results for all 36 designs are found in Section 6.2.
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FIGURE 4.1.1 POWER CURVES OF CONDITIONAL t AND WALD TESTS, ρ = 0.5, k = 5
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FIGURE 4.1.2 POWER CURVES OF CONDITIONAL t AND WALD TESTS, ρ = 0.95, k = 20
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Figure 4.1.1 shows that with ρ = 0.5, a moderate degree of endogeneity, and k = 5. In all cases the

conditional t-test constructed in this paper is unbiased for every k-class estimator considered. In the weak

instrument cases, as expected, the conditional Wald based on the 2SLS and FULL estimators are biased for

negative alternatives. However, of note is the fact that the conditional Wald based on the LIML estimator is

unbiased, and in fact has the same power as the conditional t based on the LIML estimator. The discrepancy

between this result and the that of Andrews et al. [2007] is likely due to the elimination of the parameter σu

from the test. As shown in Section 3.2, eliminating σu from the tLIML results in a symmetric distribution

under weak instruments. This symmetry may explain why the critical values of the conditional Wald based

on the LIML result in an unbiased test. On the other hand, eliminating σu from t2SLS and tFULL do not

result in a symmetric distribution. Hence one would not expect the conditional Wald based on the 2SLS

and FULL to be unbiased.

Figure 4.1.2 shows that with ρ = 0.95, a strong degree of endogeneity, and k = 20. Again the conditional

Wald based on the 2SLS and FULL estimators are biased for negative alternatives, only more so than in

4.1.1. Even under strong instruments, the conditional Wald based on the 2SLS estimator is biased. By

contrast, every variety of conditional t-test is unbiased. Although it is unbiased, the conditional t-test based

on the 2SLS estimator appears to lose power compared with figure 4.1.1. By contrast, the conditional t

based on the FULL estimator appears to show better power properties under weak instruments compared

to 4.1.1. Panels 4.1.2A and 4.1.2B are noteworthy in that they show the strongest divergence between the

conditional t and conditional Wald based on the LIML estimator. In both 4.1.2A and 4.1.2B, the conditional

Wald has slightly better power around β/λ = 3 and β/λ = 4, respectively.

4.2 Power Comparison with the AR, LM, and CLR

This section compares the power properties of the conditional t test using the three k-class estimators

with those of the conditional likelihood ratio test (CLR) of Moreira [2003], the AR test of Anderson and

Rubin [1949], and the LM test of Breusch and Pagan [1980]; independently shown by Kleibergen [2002] and

Moreira [2002] to have correct size. Complete results for all 36 designs are found in Section 6.3.
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FIGURE 4.2.1 POWER CURVES OF CONDITIONAL t, AR, LM, AND CLR TESTS, ρ = 0.5, k = 5
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FIGURE 4.2.2 POWER CURVES OF CONDITIONAL t, AR, LM, AND CLR TESTS, ρ = 0.95, k = 20
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Figure 4.2.1 shows that the conditional t-test based on LIML performs well against the AR, LM, and

CLR tests in every case. In particular, the conditional t-test based on LIML has power properties almost

identical to that of the CLR test.

Figure 4.2.2 shows, analogous to 4.1.2, the strongest divergence between the conditional t test based

the LIML and the CLR test. In particular, in both 4.2.2A and 4.2.2B, the CLR has slightly better power

compared with the conditional t based the LIML around β/λ = 3 and β/λ = 4, respectively. This is precisely

where the divergence between the conditional t test based the LIML and the conditional Wald test based

the LIML occurred. It appears that the conditional Wald based the LIML, after eliminating σu from the

test, has nearly identical power properties to the CLR in every case considered.

5 Conclusion

Previous authors, e.g. Andrews et al. [2007] and Moreira [2003], only required that the conditional Wald

test have correct size. By not taking into account the asymmetry of the distribution of the conditional

t-statistic, the critical values for the conditional Wald result in bias under weak instruments. By imposing

unbiasedness and taking into account this asymmetry, unbiased conditional Wald tests based on k-class

estimators can be constructed. In addition, power is improved by eliminating the unknown structural form

error variance from the test. Numerical results appear to confirm the validity of the methodology as well as

well as the algorithm used to construct the test.

6 Appendix

6.1 Derivation of Statistics

DERIVATION OF T-STATISTICS BASED ON K-CLASS ESTIMATORS AS FUNCTIONS OF QS ,
QST , and QT :

This section derives k-class t-statistics, two-stage least squares, LIML, and the modified LIML of Fuller

[1977] as functions of QS , QST , and QT . For simplicity, we assume that Y has already been projected onto

the space orthogonal to the column space of any exogenous regressors X.

[S, T ] = (Z ′Z)
−1/2

Z ′Y Ω−
1/2

[
Ω

1/2b0√
b′0Ωb0

,
Ω−

1/2a0√
a′0Ω−1a0

]
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⇒ [S, T ]


b′0Ω

1/2√
b′0Ωb0

a′0Ω−
1/2√

a′0Ω−1a0

Ω
1/2 = (Z ′Z)

−1/2
Z ′Y

⇒ [S, T ]


b′0Ω√
b′0Ωb0

a′0√
a′0Ω−1a0

 = (Z ′Z)
−1/2

Z ′Y

⇒ [S, T ]


b′0Ωe1√
b′0Ωb0

a′0e1√
a′0Ω−1a0

 = (Z ′Z)
−1/2

Z ′y1

⇒ [S, T ]


b′0Ωe2√
b′0Ωb0

a′0e2√
a′0Ω−1a0

 = (Z ′Z)
−1/2

Z ′y2

⇒ (Z ′Z)
−1/2

Z ′y2 = c1S + c2T

where

c1 =
b′0Ωe2√
b′0Ωb0

, c2 =
a′0e2√
a′0Ω−1a0

, d1 =
b′0Ωe1√
b′0Ωb0

, and d2 =
a′0e1√
a′0Ω−1a0

⇒ y′2PZy2 = y′2Z (Z ′Z)
−1
Z ′y2

=
(

(Z ′Z)
−1/2

Z ′y2

)′ (
(Z ′Z)

−1/2
Z ′y2

)
= (c1S + c2T )

′
(c1S + c2T )

= (c1S
′ + c2T

′) (c1S + c2T )

= c21S
′S + c1c2S

′T + c1c2T
′S + c22T

′T

= c21QS + 2c1c2QST + c22QT
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⇒ y′2PZy1 = y′2Z (Z ′Z)
−1
Z ′y1

=
(

(Z ′Z)
−1/2

Z ′y2

)′ (
(Z ′Z)

−1/2
Z ′y1

)
= (c1S + c2T )

′
(d1S + d2T )

= (c1S
′ + c2T

′) (d1S + d2T )

= c1d1S
′S + c1d2S

′T + c2d1T
′S + c2d2T

′T

= c1d1QS + (c1d2 + c2d1)QST + c2d2QT

Using the expression for β̂κ given in 2.0.5, we have

t (κ) =

(
β̂ (κ)− β0

)
σ̂u

· (y′2PZy2 − κω22)
1/2

=
1

σ̂u

(
y′2PZy1 − κω12

y′2PZy2 − κω22
− β0

)
· (y′2PZy2 − κω22)

1/2

=
1

σ̂u

(
y′2PZy1 − κω12

(y′2PZy2 − κω22)
1/2
− β0 (y′2PZy2 − κω22)

1/2

)

=
1

σ̂u

(
c1d1QS + (c1d2 + c2d1)QST + c2d2QT − κω12

(c21QS + 2c1c2QST + c22QT − κω22)
1/2

− β0
(
c21QS + 2c1c2QST + c22QT − κω22

)1/2)

Next we find an expression for κ in terms of QS , QST , and QT . Let

p1 =
b′0Ω√
b′0Ωb0

and p2 =
a′0√

a′0Ω−1a0

By Andrews et al. [2007] equation 12, Y ′PZY can be written in terms of QS , QST , and QT , in the following

manner:

Y ′PZY = Ω
1/2

[
Ω′

1/2b0√
b′0Ωb0

,
Ω−

1/2a0√
a′0Ω−1a0

]′−1  QS QST

QST QT

[ Ω′
1/2b0√
b′0Ωb0

,
Ω−

1/2a0√
a′0Ω−1a0

]−1
Ω′

1/2

=

 D11 (QS , QST , QT ) D12 (QS , QST , QT )

D21 (QS , QST , QT ) D22 (QS , QST , QT )


=

 D11 D12

D21 D22


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⇒ h (κ) = det (Y ′PZY − κΩ)

= det


 D11 D12

D21 D22

− κ
 ω11 ω21

ω12 ω22




= det


 D11 − κω11 D12 − κω21

D21 − κω12 D22 − κω22




= (D11 − κω11) (D22 − κω22)− (D21 − κω12) (D12 − κω21)

= D11D22 − ω22D11κ− ω11D22κ+ ω11ω22κ
2 −D21D12 + ω21D21κ+ ω12D12κ− ω21ω12κ

2

= (ω11ω22 − ω21ω12)︸ ︷︷ ︸
P2

κ2 + (ω21D21 + ω12D12 − ω22D11 − ω11D22)︸ ︷︷ ︸
P1(QS ,QST ,QT )

κ+ (D11D22 −D21D12)︸ ︷︷ ︸
P0(QS ,QST ,QT )

= P2κ
2 + P1 (QS , QST , QT )κ+ P0 (QS , QST , QT )

Then by 2.0.6,

κLIML = The smallest root of h (κ) = P2κ
2 + P1 (QS , QST , QT )κ+ P0 (QS , QST , QT ) = 0

and thus we have

t2SLS =
1

σ̂u

(
c1d1QS + (c1d2 + c2d1)QST + c2d2QT

(c21QS + 2c1c2QST + c22QT )
1/2

− β0
(
c21QS + 2c1c2QST + c22QT

)1/2)

tLIML =
1

σ̂u

(
c1d1QS + (c1d2 + c2d1)QST + c2d2QT − κLIMLω12

(c21QS + 2c1c2QST + c22QT − κLIMLω22)
1/2

− β0
(
c21QS + 2c1c2QST + c22QT − κLIMLω22

)1/2)

tFULL =
1

σ̂u

(
c1d1QS + (c1d2 + c2d1)QST + c2d2QT − κFULLω12

(c21QS + 2c1c2QST + c22QT − κFULLω22)
1/2

− β0
(
c21QS + 2c1c2QST + c22QT − κFULLω22

)1/2) . �

6.2 Power Curves for the Conditional t-Test Compared with the Conditional

Wald
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6.3 Power Curves for the Conditional t-Test Compared with the AR, LM, and

CLR
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 ρ = 0.5, k = 20, λ /k = 1

 

 

LM

AR

CLR

CT − 2SLS

CT − FULL

CT − LIML

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

β /√λ

p
o

w
e

r

FIGURE 6.3.6C

 ρ = 0.5, k = 20, λ /k = 4

 

 

LM

AR

CLR

CT − 2SLS

CT − FULL

CT − LIML

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

β /√λ

p
o

w
e

r

FIGURE 6.3.6D

 ρ = 0.5, k = 20, λ /k = 16

 

 

LM

AR

CLR

CT − 2SLS

CT − FULL

CT − LIML

38



−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

β /√λ

p
o

w
e

r
FIGURE 6.3.7A
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 ρ = 0.95, k = 5, λ /k = 4
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FIGURE 6.3.9A

 ρ = 0.95, k = 20, λ /k = 0.5
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6.4 Proofs

PROOF OF LEMMA 3.1.1: Since the expectation in the left-hand side of 3.1.2 is a probability, it

is always between one and zero, and thus exists. By Rudin [1976], Definition 11.34, under the null,

I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )} ∈ L2 and LM ∈ L2. Then by Rudin [1976], Theorem 11.35,

∣∣∣Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)∣∣∣ ≤ Eβ0

(
|I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM |

)
≤ ‖I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}‖ ‖LM‖(

where ‖f‖ =

{ˆ
|f |2 dµ

}1/2
)

≤ ‖LM‖

< ∞ �

PROOF OF LEMMA 3.1.2:

a)

g (C1 (qT ) , C2 (qT )) = Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
= P (C1 (qT ) < tκ (QS , LM, qT ) < C2 (qT ))

= P (tκ (QS , LM, qT ) < C2 (qT ))− P (tκ (QS , LM, qT ) < C1 (qT ))

= P (tκ (QS , LM, qT ) ≤ C2 (qT ))− P (tκ (QS , LM, qT ) ≤ C1 (qT ))
Since the cdf of tκ (QS , LM, qT )

is continuous.

= Ftκ(QS ,LM,qT ) (C2 (qT ))− Ftκ(QS ,LM,qT ) (C1 (qT )) (a sum of two cdfs.)

∴ g (C1 (qT ) , C2 (qT )) = Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
is a continuous function of C1 (qT )

and C2 (qT ). �

b)

Let p0 be the probability density under the null with respect to a measure µ and let (Cn1 (qT ) , Cn2 (qT ))→

(C∗1 (qT ) , C∗2 (qT )).

Note that since

0 ≤ I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )} ≤ 1

we have

|I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM | ≤ |LM | .
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Define

ϕC1,C2
= I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )} .

Then

lim
n→∞

g∗ (Cn1 (qT ) , Cn2 (qT )) = lim
n→∞

Eβ0
(I {Cn1 (qT ) < tκ (QS , LM ; qT ) < Cn2 (qT )}LM)

= lim
n→∞

ˆ (
ϕCn1 ,Cn2

)
LM p0 dµ

=

ˆ
lim
n→∞

(
ϕCn1 ,Cn2

)
LM p0 dµ by dominated convergence.

=

ˆ (
ϕC∗

1 ,C
∗
2

)
LM p0dµ

= Eβ0

{(
ϕC∗

1 ,C
∗
2

)
LM

}
∴ g∗ (C1 (qT ) , C2 (qT )) = Eβ0 (I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM) is a continuous function of

C1 (qT ) and C2 (qT ). �

PROOF OF THEOREM 3.1.3:

a) By Lemma 3.1.1, the expectations both exist. Since
{
QjS , LM

j
}

is i.i.d., the sequences{
I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

}
and

{
I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}}
are

i.i.d.. The results thus follow as a straightforward application of the Strong Law of Large Numbers. �

b) Let

Q̂n ((C1 (qT ) , C2 (qT ))) =
∣∣∣ 1
J

J∑
j=1

I
{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
and

Q0 ((C1 (qT ) , C2 (qT ))) = Eβ0

(∣∣∣I{C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣)

Fix QT = qT and let (C∗1 (qT ) , C∗2 (qT )) be the solutions to (3.1.4). (C∗1 (qT ) , C∗2 (qT )) is a point in the interior

of a convex set Θ ⊂ R2. By assumption, Q0 (C1 (qT ) , C2 (qT )) is uniquely maximized at (C∗1 (qT ) , C∗2 (qT )).

By theorem 3.1.3, Q̂n ((C1 (qT ) , C2 (qT )))
p−→ Q0 ((C1 (qT ) , C2 (qT ))) for all (C1 (qT ) , C2 (qT )) ∈ Θ. Since

Q̂n ((C1 (qT ) , C2 (qT ))) is a convex function, the result follows from Newey and McFadden [1994] Theorem

2.7. �
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PROOF OF COROLLARY 3.1.5: By definition 3.1.4,

(
CJ1 (qT ) , CJ2 (qT )

)
= argmin

(C1(qT ),C2(qT ))

∣∣∣ 1
J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α

Taking the probability limit,

plim
J→∞

(
CJ1 (qT ) , CJ2 (qT )

)
= plim
J→∞

argmin
(C1(qT ),C2(qT ))

∣∣∣ 1
J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α .

Then by Theorem 3.1.2b,

plim
J→∞

(
CJ1 (qT ) , CJ2 (qT )

)
= argmin

(C1(qT ),C2(qT ))

plim
J→∞

∣∣∣ 1
J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
LM j

∣∣∣
such that

1

J

∑J
j=1 I

{
C1 (qT ) < tκ

(
QjS , LM

j ; qT

)
< C2 (qT )

}
= 1− α .

By Theorem 3.1.2a,

plim
J→∞

(
CJ1 (qT ) , CJ2 (qT )

)
= argmin

(C1(qT ),C2(qT ))

∣∣∣Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}LM

)∣∣∣
such that Eβ0

(
I {C1 (qT ) < tκ (QS , LM ; qT ) < C2 (qT )}

)
= 1− α .

Hence by 3.1.4.,

plim
J→∞

(
CJ1 (qT ) , CJ2 (qT )

)
=
(
C1 (qT ) , C2 (qT )

)
. �

6.5 MATLAB Code, Results, and Replication Files

Annotated MATLAB code used for simulations and graphing, power results, and all other files necessary

for replication can be found at:

http://www.columbia.edu/~bsm2112/thesis_replication.zip
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