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I.1 Background 

Patents incentivize innovation by giving firms a period of market exclusivity during 

which they can earn returns to recover the high Research and Development (R&D) expenditure 

they incurred to develop their innovations. Market exclusivity describes the period of a time in 

which a firm has a monopoly over its invention. In the pharmaceutical industry, patents play an 

especially central role because a significant portion of costs come from R&D in laboratory work, 

clinical trials, and other tests to prove safety and efficacy. After a drug’s composition is 

determined, the actual manufacturing costs are low compared to the R&D costs. After the 

inventing firm – which will be referred to as the “brand” firm – develops a drug, without a 

patent, any other company can use this formula to manufacture and sell the drugs without costly 

R&D expenditures. These later firms will be referred to as “generic” firms, as they manufacture 

generic versions of brand firm drugs. Sales lost by a brand name company after generic entry are 

between 14%-41%, which represents $157 billion worth of industry-wide sales.1 In addition, 

prices fall an average of 85% after generic entry, with generic market penetration rates2 of 

around 90%.3  Immediate generic competition implies that a brand company cannot maintain the 

prices and market share needed to recover high R&D costs. Patents are essential to encourage 

companies to continue to invest millions of dollars into R&D and continue to innovate, giving 

brand firms a chance to recover some R&D costs before a generic manufacturer enters. Since the 

regulatory framework surrounding this topic is complex, the first section will outline how patents 

and patent challenges work under the Hatch-Waxman Act, the current central legal framework 

surrounding patents and patent challenges.  

When a company develops a new drug after obtaining promising laboratory results, they 

will attempt to run clinical trials to prove that the drug meets Food and Drug Administration 

(FDA) standards. After the company discovers promising information on a drug’s safety and 

efficacy in initial trials, they submit a New Drug Application (NDA) to the FDA. If the FDA 

approves the NDA, the company has the right to market the drug to the public. The firm can then 

apply for a patent separately at the U.S. Patent and Trademark Office (USPTO). A patent is a 

property right issued by the USPTO to an inventor to “exclude others from making, using, 

                                                        
1 Schacht (2012). 
2 The generic penetration rate is the total amount of sales provided by generic firms compared to the total market for 

the drug. 
3 FTC (2010). 
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offering for sale, or selling the invention throughout the United States or importing the invention 

into the United States” for a set period of time. Generally, patents are granted for 20 years from 

the date on which the application was filed. Patents are usually filed within 30 days of NDA 

approval. After the patent is approved, it is placed on the FDA’s Approved Drug Products with 

Therapeutic Equivalence Evaluations, otherwise known as the Orange Book, which is a listing of 

drug products approved by the FDA on the basis of safety and efficacy and current standing 

patents.  

A patent usually includes the specification of a certain compound, or pharmaceutical 

composition, in addition to a method of how to use the compound in the treatment or prevention 

of a disease. A patent can be as broad as to protect the entire compound and its use in any way or 

as narrow as to protect only a small modification to an existing drug. For example, a company 

could patent an extended-release version of an existing compound or combine two successful 

compounds to market as a new drug, and the patent would only protect these modifications rather 

than the actual compound itself. For racemate drugs that are compounds with multiple 

enantiomers (mirror-image molecules with the same chemical composition), companies often 

change the enantiomer and alter the chemical compound slightly, and some patents would only 

protect this new enantiomer modification. In addition, companies can also patent new uses of 

existing compounds and market them as a different drug. The patent protection strength is a 

combination of the patent length and breadth of protection.4 Both of these components are 

included in the patent application that the company fills out, but ultimately determined by the 

USPTO at the time of patent issuance.  

An important aspect of USPTO patents is that the drug is not put under intense scrutiny 

before the patent is granted. The USPTO simply does not have enough resources to ensure that 

each patent granted has the length and strength that accurately reflects the novelty of the drug it 

protects. Therefore, patent litigation serves to discover and establish the optimal length of a 

patent. When a patent is challenged, the decision that results and the entry date that prevails 

should reflect the optimal amount of patent protection that balances incentives for innovation 

with the costs of temporary monopoly. The importance of patent litigation can be seen in a 

Federal Trade Commission (FTC) study from 2002, where 73% of all patent cases that went to 

trial were won by the generic. This statistic indicates that a larger number of patents issued by 

                                                        
4 Gupta et. al (2010). 
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the USPTO were given a stronger protective power than they should have been given, based on 

how beneficial the patented drug is to society. While settlements without payments may allow 

firms to reach a decision that would have been reached in court without costly litigation,5 

settlements with payments distort this optimality discovering process. 

 

I.2 Intuitional Framework of the Hatch-Waxman Act 

The Drug Price Competition and Patent Term Restoration Act of 1984, known as the 

Hatch-Waxman Act (H-W), set incentives for both brand and generic drug companies to obtain 

and challenge patents in the pharmaceutical industry. Among many other policies, H-W outlined 

a cheaper and faster process for generic companies to enter the market to encourage generic 

competition. This accelerated process begins with the generic filing an Abbreviated New Drug 

Application (ANDA) on a patented drug to the FDA. An ANDA means that a generic firm can 

utilize trials and data already compiled by the brand firm as long as they prove bioequivalence.6 

It is much less costly to develop a new drug through an ANDA than an NDA, as the brand firm 

has paid for the vast majority of R&D expenses when they filed their NDA. However, for brand 

drugs that are patented, an ANDA is by definition an act of patent infringement. H-W specifies 

four special procedures to address ANDA-related patent disputes. Generic firms must prove one 

of the following about the patent that their ANDA may violate: 

(I) The patent has already expired  

(II) The patent has not yet been filed 

(III) The generic won't market their drug until the patent expires 

(IV) The existing patent is invalid or not infringed 

In the last clause, proving a patent is “invalid” means demonstrating that the patent should have 

never been issued in the first place because the invention it protects is not novel enough to 

warrant such a patent. Proving that a patent is “not infringed” by the ANDA generic drug 

involves demonstrating that the generic drug in question does not fall in the scope of exclusion 

specified by the patent. Proving either a patent is invalid or uninfringed allows the generic firm 

to enter immediately after the litigation is won. The last clause is called a Paragraph IV 

                                                        
5 This idea will be investigated further later in this paper. 
6 “Bioequivalence” means that the generic drugs uses the same active ingredients and the same dosage will cause the 

same absorption rate into the body as the brand drug.  
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certification of the ANDA filing and usually results in patent litigation. These Paragraph IV 

patent disputes are the focus of this paper.  

Drugs approved by the FDA are the only products in which a competitor must resolve 

conflicting patent claims before entering the market. Therefore, after the Paragraph IV ANDA is 

filed, if the brand firm sues within 45 days, the FDA must wait until the earliest of the following 

three events before approving the generic firm’s ANDA: 

(1) The generic wins the patent trial in court by proving that the patent is invalid or that their 

generic drug does not infringe upon it  

(2) 30 months pass and no court decision has yet been made 

(3) The patent expires 

If (2) occurs and the FDA approves the ANDA without a court decision, then the generic may 

market their drug “at risk,” which means that they must pay damages to the brand firm if a court 

eventually finds the patent valid or infringed by the generic drug. If the brand firm does not sue 

within 45 days, the FDA can approve the ANDA at any time, but the costs of damages will be up 

to the generic filer to pay if the brand firm eventually sues and the patent is found valid or 

infringed by the generic drug.  By the end of 2009, 55% of all approved brand name drugs (299 

out of 692 total drugs) had Paragraph IV challenges, an increase from around 20% in 1984 when 

H-W was first passed.7 Paragraph IV ANDAs have become a central way in which generic firms 

raise patent challenges in the pharmaceutical industry.  

As with any litigation, the parties can opt to “settle” on an agreed entry date before the 

actual hearing itself. This saves both the brand and generic firms costly litigation fees. However, 

in many ANDA Paragraph IV cases beginning in the 1990s, the brand firm made a payment to 

the generic firm as a stipulation of their settlements. These were deemed “reverse payments,” as 

the party suing pays the party being sued. These reverse payments have been accused by the FTC 

of being collusive, since the brand firm “pays for the delay” of the generic firm. Reverse 

payment settlements could involve a cash payment, but more often involve some sort of business 

side deal. These non-cash side deals fall into a number of categories: 

(1) Noncash business side deals: includes licenses from the brand firm to the generic to 

market/produce other drugs, supply of certain drugs to the generic firm, etc. 

                                                        
7 Hemphill & Sampat (2011) conduct a large-sample study of patent challenges on 1,481 drugs approved by the 

FDA 1985-2008. 
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(2) No-AG clauses: authorized generics (AG) are the brand firm’s own generic version of 

their drug. The brand firm may market their AG or, more often, partner with a generic 

manufacturer to do so. AG’s are allowed during an ANDA filer’s 180-day exclusivity 

period, so agreeing not to market an AG sacrifices brand firm profits 

(3)  Retained exclusivity: a third type of nonmonetary “pay for delay” settlement that may 

not involve direct monetary payment, but involves the brand firm allowing the generic to 

maintain the 180-day exclusivity period by agreeing to drop the patent fight at a later 

date, so that the generic first filer has a higher probability (essentially a sure chance) of 

getting 180 days of exclusivity than if they go to court 

In a study conducted by Hemphill (2009), out of a dataset of 101 drugs with settlements, 51 

(50%) drugs had settlements with payments and 48 (47%) had settlements without payments.8 

Out of the 51 drugs with payments: five were cash (~10%), 16 involved side deals (~30%), and 

25 had the retained exclusivity agreement only (~50%).9 Of the cash and side deal monetary 

payments, most generics also were guaranteed retained exclusivity as part of the settlement. 

Most deals in recent years involve complex side deal or retained exclusivity agreements. These 

deals are difficult to estimate in value and therefore add more difficulty when litigating antitrust 

consequences of reverse payment settlements.  

It is important to examine these reverse payment settlements and question whether or not 

they have anticompetitive effects through collusive entry deterrence. If weak patents were held 

for significantly longer because the brand is paying the generic to stay out, these settlements 

would be extremely costly to consumers who must pay higher brand name prices for a longer 

period of time. The FTC (2010) estimates that settlements with payments have entry dates that 

are 17 months later than settlements without payments, using a weighted average based on drug 

sales. They further project that these 17 months account for an additional $20 billion in sales of 

brand drugs. These massive welfare consequences make it crucial to examine these settlements 

in detail to examine their effect on innovation and competition.  

 

I.3 Literature Review 

                                                        
8 For two drugs, the generic firm acquired the brand firm’s rights to the drug and thus resolved the patent dispute 

through acquisition.  
9 Five drugs are other types of deals that restrict entry while the patent suit is pending but are not settlements about 

the outcome of the suit.  
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Shapiro (2003), as well as Elhauge and Krueger (2012), proposes the fundamental idea 

that a settlement is anticompetitive if the length of patent protection under the settlement extends 

beyond the patent’s expected length under litigation (since litigated patent length should reflect 

the patent’s true strength). While the ideal test for anticompetitive effects would be comparing 

the patent length under settlement with what would have prevailed in litigation, it is extremely 

difficult to compare the patent length to what would have happened in a normal trial. The 

theoretical arguments stemming from the Supreme Court case FTC v. Actavis attempt to evaluate 

the presence of antitrust concerns through the proxy of payment size. However, other economists 

have argued that settlements could serve functions other than entry deterrence, such as a risk 

premium or bridging a decision gap between players with asymmetric information. On the other 

hand, some empirical studies try to test this very idea by examining patent lengths established by 

settlements with and without payments.10 Another study, Drake, Starr, and McGuire (2013), 

explores the empirical implication of this idea by examining stock price hikes of brand firms that 

settle with payments vs. without payments.11 Theoretical arguments vastly outnumber empirical 

ones due to lack of data on the specific terms of the settlements and financial information on the 

firms involved.   

 

II.1 Literature Review – Theoretical Studies 

Due to the fact that settlements that involve payments occur often in litigation, one 

argument that these settlements are not anticompetitive is that they allow two parties with 

differing opinions about the strength of the patent to logistically reach an agreement without 

incurring litigation costs. Willig and Bigelow (2004) argue that payments may be essential for 

negotiating settlements when two parties have different information, expectations, and levels of 

risk aversion. For example, if a brand firm believes the patent is very strong, and the generic 

believes the patent to be very weak, then there would be no way to bridge the “gap” between 

their expectations without some payment: 

“The circumstances of information asymmetry, expectation asymmetry, or subsequent 

entry are not rare, and so it can be expected that a policy of condemnation of agreements 

with financial payments would be unnecessarily costly to society in repressing socially 

beneficial settlements, and fomenting otherwise unnecessary litigation.”’ 

 

                                                        
10 FTC (2010) found that settlements with payments delayed entry by an average of 17 months longer than 

settlements with payments.   
11 Drake et. al (2013) will be discussed in detail in the “Empirical Studies” section of this paper. 
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However, this argument is limited in its treatment of the motivation for making payments. For 

example, since the sum of duopoly profits are proven to be less than monopoly profits, there is a 

strong incentive for the brand firm to pay a sum of money to delay entry in a mutually beneficial 

agreement with the generic firm at a cost to consumers. We can refer back to the fact that after 

generic entry, brand companies lose 14%-41% of their sales on the drug and therefore can be 

better off with a settlement as long as payments do not exceed sales lost due to generic entry. 

While it is true that not all settlement payments are anticompetitive, ignoring anticompetitive 

effects by providing only one motivation for the presence of payments is limiting.  

The reasoning proposed by Willig and Bigelow could be valid when arguing against the 

use of per se illegality of reverse payment settlements. Prior to FTC v. Actavis in 2013, the courts 

were split on whether these payments should be presumed anticompetitive (per se) or whether 

the scope-of-the-patent test should be applied. The scope-of-the-patent test states that an 

agreement is illegal only if the agreement reduces competition and gives the brand firm more 

market power than what the patent originally granted. This argument assumes that the length of 

every patent granted by the USPTO reflects its optimal protection strength and therefore 

settlements are not anticompetitive as long as they set entry dates earlier than those set by the 

original patent. This test is deeply flawed because it does not take into account the crucial 

function that patent litigation serves as checking patents to make sure they actually reflect the 

optimal protection strengths. Therefore, while the per se approach could be too restrictive, the 

scope-of-the-patent test is also far too lenient in the antitrust examination of reverse payment 

settlements.  

In Supreme Court case FTC v. Actavis (2013), the generic firm Actavis was accused of 

anticompetitive activity when it entered into a reverse payment settlement with brand firm 

Solvay. The exact settlement terms are not publicly available, but it involved Actavis agreeing 

not to bring a generic version of AndroGel to market for a specified number of years and 

promoting AndroGel to doctors in exchange for millions of dollars from Solvay.12 The Supreme 

Court rejected both the per se approach and scope-of-the-patent test, ruling that these reverse 

payment settlements should be reviewed by the rule of reason antitrust standard. This marked a 

turning point in the litigation of reverse payment settlements, because the Court explicitly 

established that these payments should be treated as an antitrust issue.   

                                                        
12 FTC v. Actavis, Inc., 133 S. Ct. 2223, 2227 (2013).   



8 

 

While the Court left the exact construction of the rule of reason test to lower courts, it did 

establish a few fundamental ways to examine whether a reverse payment is anticompetitive. 

Firstly, the Court unanimously decided that anticompetitive activity should not be determined by 

comparing the length that would have prevailed had there been a trial against the length of 

protection established by the settlement. In other words, courts should not hold a mini-trial on 

patent validity within an antitrust trial. This is not only time consuming and difficult, but it forces 

firms to go to trial on the very issue they settled on to avoid having to go to trial.13 Secondly, to 

avoid this patent mini-trial, the Supreme Court proposed that there is a link between the size of 

the reverse payment and degree of anticompetitive effect:  

“…the likelihood of a reverse payment bringing about anticompetitive effects depends 

upon its size, its scale in relation to the payor’s anticipated future litigation costs, its 

independence from other services for which it might represent payment, and the lack of 

any other convincing justification.”14 
 

Thirdly, the Court’s decision more specifically states that the settlement is likely anticompetitive 

when the payment size exceeds the benefits that the brand firm gets out of the settlement – which 

the court calls “justifications” for payments to the generic. Justifications include savings on 

litigation costs and the value of any other services the generic may pay to the brand firm as a 

result of the settlement (through side business deals).15  

Edlin, Hemphill, Hovenkamp, and Shapiro (EHHS) (2013) construct a model of the 

Court’s decision in Activating Actavis based on the test outlined in Justice Breyer’s opinion. This 

test, popularly coined as the Actavis Inference, states that anticompetitive activity is present 

when: 

(1) The generic’s entry is delayed from the date they initially intended to enter from filing 

the ANDA 

(2) Reverse payment size is greater than the brand’s litigation costs plus the value of goods 

and services provided by generic to the brand 

If (1) and (2) are true, then the settlement must be anticompetitive because there is no other 

explanation or justification for this excess payment than delayed entry beyond what is optimal 

                                                        
13 2243 (Roberts, C.J., dissenting) (noting bad results if “immediately after settling, the parties would have to litigate 

the same issue—the question of patent validity—as part of a defense against an antitrust suit”).  
14 Ibid, 20, Opinion of the court. 
15 Ibid. 



9 

 

for consumers. EHHS propose a mathematical model of the Actavis Inference in which a brand 

firm is willing to settle if:  

 
𝐸 > 𝑃𝑇 +

𝑋 − 𝐶𝐴

𝑀𝐴 − 𝐷𝐴
 

[1] 

Where 𝐸 is the entry date for the generic firm under the settlement. 𝑃 is the probability of the 

brand firm winning the patent trial and 𝑇 is the remaining length of the patent, so 𝑃𝑇 is the 

expected patent length from going to trial, which represents the optimal length of the patent. 𝑋 is 

the settlement payment size, 𝐶𝐴 is the brand firm’s litigation cost, 𝑀𝐴 is the brand firm’s 

monopoly profits, and 𝐷𝐴 is the brand firm’s duopoly profits. This model assumes that after the 

generic firm enters at 𝐸, the brand and generic firms compete in duopoly until the patent expires. 

Using the definitions of this model, a settlement is anticompetitive when the settled patent 

length, 𝐸, exceeds the expected patent length from going to court, 𝑃𝑇:   

 𝐸 > 𝑃𝑇 [2] 

The EHHS model reaches the same qualitative conclusion as the Actavis Inference: when there is 

a large and otherwise unexplained settlement payment (when 𝑋 exceeds 𝐶𝐴), the settlement is 

anticompetitive. Therefore, for EHHS, the threshold of the settlement size is the litigation costs 

of the brand firm, 𝐶𝐴. I will develop the generic version of EHHS’s model in Section VII.2 – 

Results: Positive Returns in No Payment Group.  

Since the EHHS model was published, two other theoretical models have been published 

in response.  One model, proposed by Harris, Murphy, Willig, and Wright (HMWW) (2014) 

states that since brand firms are risk-averse, the EHHS model does not account for larger 

payment sizes due to risk aversion and therefore ignores a wide spectrum of settlements that are 

large but not anticompetitive. Many other authors, including Willig and Bigelow (2004) as well 

as Yu and Chatterji (2011), have also written about the brand firm’s risk aversion as a 

justification for large reverse payments. However, it is possible that EHHS left this out on 

purpose, as the Supreme Court in Actavis addresses the risk aversion argument: 

“The owner of a particularly valuable patent might contend, of course, that even a small 

risk of invalidity justifies a large payment. But, be that as it may, the payment (if 

otherwise unexplained) likely seeks to prevent the risk of competition. And, as we have 

said, that consequence constitutes the relevant anticompetitive harm”16 
 

                                                        
16 Ibid, page 19, Opinion. 
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Therefore, if payments due to risk aversion also mitigate risks that the patent will be proved 

invalid or not infringed in court the firm effectively pays to avoid risks of competition and any 

instances of this should be treated as anticompetitive. In other words, payments due risk aversion 

could be anticompetitive depending on the type of risk that the firm attempts to avoid with the 

payment.  

 Kobayashi, Wright, Ginsburg, and Tsai (KWGT) (2014) propose an alternative model in 

response to EHHS. This model suggests that the link between settlement payment size and 

anticompetitive activity is weak because EHHS assume monopoly to duopoly profits once entry 

occurs. KWGT state that a more accurate occurrence is monopoly to competitive market with 

multiple generic entrants. Under this model, the generic firm has less of an incentive to enter into 

the settlement because they get lower competitive profits while more entry imposes a greater loss 

on revenues for the brand firm and gives them a higher incentive to enter into a settlement. This 

makes the generic firm more receptive to a later entry date and the brand firm to an earlier one. 

This opens up the range of possible settlement payment amounts and entry dates, some of which 

would be deemed anticompetitive under the EHHS model. Therefore, KWGT argue that the 

EHHS model is too restrictive and is likely to trigger Type I error of falsely rejecting the null that 

no anticompetitive activity is present.  
 

EHHS have responded to KWGT and argue that if the brand firm is avoiding even lower 

revenues from multiple generic competitors than just one generic competitor, they will have an 

even greater incentive to increase settlement payment size. A settlement rides on the amount of 

payment the brand firm is willing to pay and should be analyzed from their perspective, because 

there is no reason for the generic to accept a smaller payment if the brand firm is offering a large 

one. EHHS make a critical point that feasible settlements are not all relevant, as most are not 

optimal and would not be chosen in equilibrium. The set of welfare-increasing settlements 

proposed by KWGT that would be deemed anticompetitive are not equilibria and therefore do 

not play a role in undermining the Actavis Inference. EHHS have also produced a new 

theoretical model in which multiple generic entries serve an even greater incentive for 

anticompetitive payments.17 

The EHHS, HMWW, and KWGT models form much of the theoretical debate on how to 

establish whether a reverse payment settlement is anticompetitive, especially after the Actavis 

                                                        
17 Edlin et. al (2015).  
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case. However, the authors do not go into an empirical calibration of their models with previous 

settlements that have occurred between 1984 and today. This could be due to the fact that it is 

extremely difficult for an outside analyst to know the terms of the settlements (only a handful of 

settlements have terms released to the public) and it is even more difficult to estimate the value 

of side deals and non-AG payments. These theoretical models serve as instruction to courts on 

how to implement the Actavis decision when full terms of the deals are known.  

 

II.2 Literature Review – Empirical Studies 

In contrast, there have been two types of empirical studies that study whether settlements 

with payments are anticompetitive. One type investigates the average additional months of 

delayed competition in settlements with payments versus settlements without payments. Another, 

which will be the focus of this paper, analyzes brand firm stock price jumps on the settlement 

day to predict abnormal profits and therefore anticompetitive activity. 

The first type of empirical study is conducted by the FTC in its 2010 report, Pay for 

Delay. The FTC examined a sample of 218 final patent settlements from 2004 to 2009, with 66 

settlements with payments and 152 settlements without payments. The study examines the 

average sales-weighted length of delayed entry (due to the settlement) for settlements with and 

without payments, and determined that settlements with payments delayed entry for an average 

of 17 months longer at the 99% confidence level. While this is a statistically significant result, it 

assumes that the samples of settlements with delays and settlements without delays are similar in 

terms of sales-weighted averages. However, the study could be ignoring additional traits of drugs 

that settle with payment, and merely looking at average delays does not directly imply 

anticompetitive activity has taken place.  

The second type of empirical study focuses on stock price movements of brand firms that 

settle. Drake, Starr, and McGuire’s (DSM) 2014 paper argues that if a settlement is considered 

anticompetitive when the expected entry delay with the settlement is greater than the expected 

entry delay with litigation, then the empirical implication is a stock price hike for the brand firm 

at the time of settlement. The firm gets more monopoly time than expected under litigation, 

higher profits, and therefore experiences a jump in their stock price. DSM use settlements 

without payments in their control group to acknowledge that “settling litigation can be motivated 

by reasons other than extending monopoly or avoiding managerial risk…These cost savings with 

settlement might cause the stock price to rise with settlement.” Therefore, DSM assume that if 
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settlements with payments raise stock prices more than settlements without payments, it should 

only be due to the payment and thus suggest anticompetitive effects. DSM utilize earlier event 

study methods by Panattoni (2009) and Jacobo-Rubio, Turner, and Williams (2014), who 

analyze stock price fluctuations of patent litigation decisions. These event study procedures will 

be described extensively in the Event Study Methodology section.  

DSM examine a set of 110 settlements between 1993 and 2013 and narrowed it down to 

68 settlements that had the qualifications for an event study, including a clear announcement 

date, a publicly traded brand firm, and no other significant news that came out around the 

settlement date. They conducted event studies for the 27 settlements with payments and 41 

settlements without payments with event windows that begin and end one, two, and three days 

before and after the event. Using the Constant Mean Model, Market Model, and Fama-French 

Model to measure stock price returns, they calculated average abnormal returns across their 

samples and summed them across their event windows to obtain Cumulative Average Abnormal 

Returns (CAAR’s). They then tested the null hypothesis that the CAAR’s for every window in 

both samples are equal to 0, as well as the null that they are not significantly different from each 

other. They were able to reject both null hypotheses. In the settlements with payments, CAAR’s 

ranged from 5.9% to 6.6% in all three models on the three symmetric event windows, all of 

which are significant at the 99% confidence interval. Settlements without payments all had 

CAAR’s less than 1% and were statistically insignificant. DSM concluded that settlements with 

payments caused a 6% abnormal return in brand drug prices and therefore empirically show that 

reverse payment settlements are anticompetitive. 

 

III. Questions  

My paper builds upon empirical studies conducted by DSM by using stock price 

movements of generic firms to determine the presence of anticompetitive activities in reverse 

payment settlements. My research is guided by three questions: 

I. Are there positive abnormal stock returns of generic firms in settlements with payments 

and settlements without payments from 1993 to 2015?  

Ib.  Do these results suggest that the settlements are anticompetitive? 

II. Do other factors in addition to indications of payments influence abnormal returns during 

settlements? Other factors that I investigate include: 

 The reputation of the generic firm characterized by how frequent they settle 
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 The drug’s sales as a percentage of firm revenue 

III. How do the stock returns of generic firms differ from brand firms during settlements? 

How do these differences describe the anticompetitive and possibly collusive nature of 

reverse payment settlements? 

 Question I poses a similar question that DSM set out to answer for the brand firm in their 

2013 study: whether there is a stock price jump in response to the settlement announcement in 

the news and whether this jump shows that the settlement is anticompetitive. DSM make two 

underlying assumptions in their study:  

(1) Settlements without payments are not anticompetitive because they represent a fair 

negotiation of the settlement terms between the brand and generic firms and serve as a 

proxy for the expected patent length from a trial 

(2) A positive abnormal stock return indicates that an anticompetitive settlement has taken 

place  

DSM’s results show that settlements with payments have a positive abnormal stock return while 

settlements with payments do not, which is constituent with the two assumptions that they make. 

In addition, DSM find a significant difference between abnormal stock returns for payment and 

non-payment settlements in all event windows. From these results and the two assumptions 

above, DSM conclude that settlements with payments are anticompetitive while settlements 

without payments are not. 

My initial hypothesis for Question I is that the generic firms’ stock returns will behave in 

a similar way, with positive abnormal returns for settlements with payments that are significantly 

different from no payment settlement stock returns in all windows. However, since my study 

explores generic settlements, I believe that assumption (1) no longer holds and will therefore 

answer Question I keeping assumption (2), but proposing a different interpretation of settlements 

without payments as assumption (1). This interpretation is based on the EHHS model and is 

developed in Section VII.2.  

Question II attempts to find different factors that influence stock price jumps at the time 

of settlement besides the announcement of a payment. This question originates from the recent 

string of settlements that involve complex side deals instead of simple transfers of cash. This 

trend likely materialized as a result of close FTC antitrust scrutiny of cash payments. They may 

serve as a way to obscure large payments through complicated settlement terms. While most 
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courts post-Actavis have treated side deals like cash payments,18 these deals add another layer of 

complexity to the Actavis Inference because courts have to value deals that may be worth 

different amounts depending on the business structure of the company involved. In addition, 

many deals in the last few years are announced as “confidential” instead of specifying payments 

or no payments. For a public company, the terms of the settlement constitute as material 

information that could significantly move the stock price but are obscured from shareholder 

knowledge. In light of these trends that add more layers of opacity to settlements, it is important 

to search for alternative means to gauge anticompetitive activity when payment and no payment 

terms and classifications are unclear.   

A second component of Question II relates to investor conceptions of different types of 

deals. While this may involve using larger event windows, it would be interesting to evaluate 

whether there are certain settlements that the market takes longer to understand. As settlement 

terms get more and more complex, perhaps investors themselves do not truly understand the full 

effects of some deals right away. This would add valuable discussion to the methodology of 

short event study windows to determine whether there are anticompetitive effects of reverse 

payment settlements. I attempt to answer this by comparing the differences between stock returns 

on the event date and days after the event date to see if there’s a delay in responding to the 

settlement announcement.  

To answer Question III, I compare my results qualitatively with DSM’s results for the 

brand firm. While there is currently no literature about the generic firm’s stock returns after 

reverse payment settlements, my initial hypothesis is that generic stock prices should also jump 

at news of settlement. If both the brand and generic stock prices jump at the news of a settlement 

with payment, it would further reinforce the collusive nature of these reverse payment 

settlements – they benefit both brand and generic firms at the cost of consumers. However, if the 

generic stocks do not jump when the brand stocks do for settlements with payments, it would 

mean that either: 

 Settlements do not produce higher future profits for generic firms and therefore the 

benefits of settlements are asymmetrically distributed to brand firms 

 Expectations of the settlements are better built into the generic’s stock prices prior to the 

settlement announcements 

                                                        
18 With the exception of two recent court cases. 
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Conversely, if stock returns of generic firms jump while brand firms do not in the case of 

settlements without payments, it may provide a different interpretation of how settlements 

without payments work for the generic firm than the brand firm (DSM’s assumption (1) from 

above). All three cases of empirical results provide insight for the interactions between the 

generic and brand firm during patent settlement and help add to the discussion of antitrust issues 

within reverse payment settlements.  

A motivating study for the method of using event studies as a way to determine the 

presence of anticompetitive activity is Panattoni (2009). After conducting event studies on 37 

Paragraph IV litigation decisions, she found that the average announcement cumulative abnormal 

return (CAAR) for the brand upon winning the patent suit was 3.84% and upon losing was   

-5.20% (both abnormal returns were significantly different from zero at the 1% level). In 

showing that stock prices jump significantly at wins and losses of patent litigation, Panattoni 

showed that the pre-event stock price reflected stockholders’ expected outcome of the litigation 

trial that factors in both possible outcomes and their probabilities. The post-event outcome 

follows a binomial outcome space of a positive stock return jump upon winning the trial and a 

negative stock return jump upon losing. By extension, DSM also assume that pre-settlement 

stock prices reflect investors’ expectations of litigation. Therefore, if a stock price jump occurs 

after a settlement, it indicates that (1) the patent length as agreed upon in the settlement is higher 

than the expected patent length from litigation (2) the stock market underestimated the expected 

litigation exclusion period, or (3) another unknown cause that is not necessarily anticompetitive 

but has influenced investors has occurred. In analyzing stock prices, I attempt to examine which 

of the previous three causes produced the stock price jumps.  

 

IV.1 Data – Collection 

My data is a panel data set that consists of all ANDA settlements between 1993 and 2015 

that fit three requirements of the event study approach: 

(i) The generic firm involved is public and trades on the New York Stock Exchange 

(NYSE) or NASDAQ Stock Market 

(ii) There is one clear announcement date that can be seen in multiple news articles 

(iii) There is no other major news by the generic firm(s) involved in the settlement within 

the widest event window, (-3,3) 
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Requirement (ii) is fulfilled if most of the news articles announcing the settlement are from the 

same date. To check whether requirement (iii) is fulfilled, I conducted a search on the firm’s 

name and/or stock ticker on Google, Lexis Nexis, and Factiva in the date range of three days 

before (𝑡=-3) and three days after (𝑡=3) the event date (𝑡=0), defined as the four-day window, (-

3,3). More explanation for the selection of event windows will be given in the Event Study 

Methodology section. I sorted the search results for relevancy and looked through the first 60-70 

results, counting earnings releases, mergers and acquisitions, major lawsuit outcomes (including 

ANDA litigation for other patents), and major changes in management as “other major news” 

that would also move the stock price and contaminate my results. However, since many generic 

firms that engage in Paragraph IV settlements are large and multinational, it is impossible to 

exclude every settlement simply due to an event that coincides with the event window. A large 

generic firm often announces a new drug, global licensing agreement, supply agreement, and lab 

results all in one week. Therefore, in order to gauge the relevancy and importance of a news 

event, I looked at the number of articles about it on the three databases. On average, there are 

about 3-4 articles for every given event so I counted an event with 6-7 articles or more as a major 

news event and excluded the settlement from my dataset.  

My data can be broken into three portions, one from a secondary data source and two 

novel datasets that I collected: 

(1) Non-novel: Settlements between 1993 and 2013 collected by DSM 

(2) Novel, dropped: Settlements between 1993 and 2013 dropped by DSM because the brand 

firm wasn’t public and/or there was another major news announcement about the brand 

firm that could have affected their stock prices 

(3) Novel, new: Settlements between 2013 and 2015 (DSM’s study ends in 2013) 

To obtain part (1) of my dataset, I took DSM’s list of 68 settlements with clear announcement 

dates and checked that they fit my two requirements (i) and (iii), which narrowed the dataset 

down to 46 settlements: 22 settlements with payment and 24 settlements without payments. 

However, DSM also applied the same requirements and dropped 52 settlements that did not meet 

the requirements from the perspective of the brand firm. Therefore, there is a subsection of data 

dropped by DSM that may meet my data requirements about the brand firm involved. For part 

(2) of my dataset, I was able to recover 38 settlements with a clear announcement date out of the 

52 settlements dropped by DSM from doing searches on Google, Lexis Nexis, and Factiva of 

combinations and variations of “settle,” “patent settlement,” “Abbreviated New Drug 
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Application,” “ANDA,” etc. for 1993-2013. Keith Drake, one of the authors of the DSM 2013 

paper, also sent me a list of 39 dropped settlements, 25 with a clear announcement date, and I 

checked to make sure that I had all of the settlements on their partial list of the settlements that 

they dropped. An important note is that my dataset retrieved 38 out of 52 settlements that were 

thrown out because the brand firm was private or had other news and can therefore still analyze 

anticompetitive effects with the generic stock price. Lastly, part (3) of my data involved looking 

for any settlements that occurred between 2013 and 2015. I looked through the three databases 

with similar search terms and narrowed my results down to 2013 through 2015. I sorted by 

relevance on each database and looked through the first 200 search results (in some cases, the 

relevancy of the results diminished long before the 200 result mark) to find a list of 41 

settlements with a clear announcement date. 

In total, I found 145 settlements with a clear announcement date between 1993 and 2015. 

I excluded 47 settlements for having a private or internationally traded generic firm and 14 more 

settlements for having other major news announcements within the period (-3,3). I ended up with 

84 settlements between 1993 and 2015 that fit my event study requirements: 33 with payments 

and 51 without payments. Since there were some settlements that involved more than one 

generic firm, these 84 settlements yielded 90 generic firms – or 90 “events” – in total.19 Of my 

initial list of 90 events, 37 were settlements with payments and 53 were settlements without 

payments.  

There were two settlements that happened on the same day between the same firms – 

Teva and Barr Labs settling with Sanofi SA on Allegra/Allegra D-12 and Nasacort on November 

19, 2008. The two settlements both involved payments and had similar terms; since it would 

difficult to distinguish the positive abnormal returns between the two settlements, I treated them 

as one event.  In addition, two settlements with payments by Impax Labs coincided with the 

period between 2007 and 2008 when it was delisted by the SEC for not filing annual earnings 

reports, so the two settlements were thrown out. Five settlements without payments settled by 

Actavis occurred after September 2015, for which CRSP had not yet updated their fourth quarter 

data for 2015 when I downloaded the database in January 2016. After excluding the nine 

                                                        
19 Out of the 85 settlements, four settlements involved two public generic firms and 1 settlement involved three 

public generic firms.  
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settlements described, my final sample size had 81 settlements: 33 settlements with payments 

and 48 settlements without payments. 

Data on the annual sales of a particular drug or a company were taken from 

www.drug.com’s lists of top-selling drugs and their annual sales20. If a drug’s annual sales could 

not be found from drug.com, I conducted searches for the drug’s name and combinations of the 

words “revenue,” “sales,” and the year in question on Google, Lexis Nexis, and Factiva. 

Company sales figures were downloaded from Computstat Industrial Files and checked against 

their annual 10-K filings to the Securities and Exchange Commission (SEC). All drug sales and 

company sales data were obtained for the year that the settlement took place or the closest year 

with available data21 and adjusted by the Consumer Price Index (CPI) All Urban Consumers 

index to be expressed in 2015 dollars. Any foreign currencies for drug sales or company sales 

were converted to U.S. dollars using the Yearly Average Currency Exchange Rates for the year 

in question from the U.S. Internal Revenue Service (IRS) website.22 

 

IV.2 Data – Sample Categorization 

In Question I, I investigate whether settlements with payments and settlements without 

payments lead to positive abnormal stock returns by separating my data into “Payments” and 

“No Payments.” However, in order to answer Question II and examine whether firm reputation 

or drug sales percentage plays a role in abnormal returns, I separated my data again into 

settlements by “frequent settlers” and “infrequent settlers” – referred to in this paper simply by 

“Frequent” and “Infrequent.” I define a “frequent settler” as a firm that settles more than 10% of 

all the settlements in the total sample. Firms in the Frequent group are Teva (TEVA), 

Actavis/Watson Pharmaceuticals (ACT/WPI), Mylan (MYL), and Barr Laboratories (BRL). 

They collectively settle 54 out of 81 settlements, which constitutes around 66.67% of the data. 

Firms in the Infrequent group are Perrigo (PRGO), Impax Laboratores (IPXL), Novartis (NVS), 

Par Pharmaceuticals (PRX), Reddy Laboratories (RDY), GeoPharma (GORX), Merck (MRK), 

and Spectrum Pharmaceuticals (SPPI). The Infrequent group collectively settle 27 out of 81 

settlements, or about a third of all settlements in the data set. Figure 1 displays the frequencies at 

which each firm settles within the entire data set: 

                                                        
20 Drug.com publishes lists of 200 or 100 top-selling brand-name drugs and their sales every year.  
21 Five out of 81 events included drug sales percentages up to two years earlier than the settlement year.  Another 

four only had nine-month or three-month sales, which I pro-rated to estimate sales for the full year.   
22 https://www.irs.gov/Individuals/International-Taxpayers/Yearly-Average-Currency-Exchange-Rates. 

http://www.drug.com's/
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Figure 1. Frequencies of Firm in Settlement Data 

 

While I could merely include dummy variables of “Payment/No Payment” and 

“Frequent/Infrequent Settler” in my regression of abnormal returns onto sales % to answer the 

second part of Question II, I decided to separate the data into four different groups to allow for 

interaction between the dummies (Payment/No Payment and Frequent/Infrequent Settler) and the 

continuous variable (Sales %). The following diagram represents the breakdown of the four 

subcategories of my data: 

Figure 2. Subcategories and number of samples (N) in each group 

    

 

 

 

 

 

 

 

 

V.1 Event Study Methodology – Daily Returns and Selection of Windows 

Event studies examine the impact of an event on a company’s stock price to gauge 
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stock market responds quickly to news of an event bearing on the expected profits of a firm.23 

Changes in stock prices are expressed as stock returns, which is essentially defined as the 

percentage change of the stock price from the previous day. To obtain daily stock return data, I 

extracted the adjusted stock returns from the Center for Research in Security Prices (CRSP) 

database through the Wharton Research Data Services (WRDS). I imported the data into SAS 

with Eventus software to sort the data and calculate my performance variables based on different 

expected returns models. I will also use Eventus to conduct my hypothesis tests for Question I 

and I use base SAS without Eventus to conduct regressions for Question II. CRSP defines a 

stock return as the change in the total value of an investment in a security over some period of 

time per dollar of initial investment, calculated as:   

 
𝑟𝑖𝑡 =

𝑝𝑡𝑓𝑡 + 𝑑𝑡

𝑝𝑡−1
− 1 

[3] 

𝑝𝑡 = price of security 𝑖 at time 𝑡 

𝑝𝑡−1 = price of security 𝑖 at time 𝑡 − 1 

𝑑𝑡  = dividend of security 𝑖 at time 𝑡, assumed to be re-invested in the security post-distribution 

𝑓𝑡 = factor to adjust prices of security 𝑖 based on any stock splits that may have occurred 

 Abnormal returns in an event study are calculated as the difference between the actual 

daily stock return on a given day in the event window and the expected stock return on that day: 

 𝐴𝑅𝑖𝑡 =  𝑟𝑖𝑡 − 𝐸(𝑟𝑖𝑡) [4] 

where 𝑖 is a given security and 𝑡 is a given day in the event window. In my paper, the event date 

occurs on date 𝑡=0 when the settlement is first announced in the news, while negative values of 

𝑡 indicate days before the event date and positive values of 𝑡 indicate days after the event date. 

For example, 𝑡=-3 is the date that is three days before the event date. 

Abnormal returns are often aggregated into “Cumulative Abnormal Returns” 24 across 

“event windows”, which define the days across which the market is assumed to be responding to 

news of the event. It often takes multiple days to adequately capture the effects of an event 

because of differences in announcement time of day, news leakage, and imperfect news 

dissemination. Usually, the event window is chosen as the day of the event and one day after 

(Panattoni 2011), and sometimes a few days before and after (Drake et. al 2013). It’s important 

                                                        
23 Drake et. al (2013) and Brown and Warner (1985). 
24 The Performance Variables section later in the paper will describe the exact calculation of Cumulative Abnormal 

Returns (CARi,T2-T1) and Cumulative Average Abnormal Returns (CAART2-T1). 
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to balance an event window wide enough to adequately capture the effects of an event but 

narrow enough to avoid excess noise of other events (MacKinlay 1997, Brown and Warner 

1985). For events like settlement announcements, negotiations regarding settlement terms have 

been going on for months or years before the announcement date, so returns on the days prior to 

the announcement date 0 are necessary to account for any news leakage or capture any trading 

based on expectations about the event that are not captured in the estimated returns 𝐸(𝑟𝑖𝑡). At the 

same time, the period after the event could capture any delayed responses to complex and opaque 

settlement terms. To capture effects before and after the event date, I consider symmetric and 

asymmetric windows that begin (and end) one, two, and three day(s) before (and after) the event. 

For example, an event window (-3,0) represents the three-day period from 𝑡=-3 to 𝑡=0. My event 

windows are: (0,0), (-3,3), (-2,2), (-1,1), (-3,0),(-2,0),(-1,0), (0,1), (0,2), and (0,3). My windows 

are also intentionally similar to DSM’s windows in order to evaluate any differences between the 

generic and brand firm stock movements when answering Question III.  

 

V.2 Event Study Methodology – Estimating 𝐸(𝑟𝑖𝑡)  

While the abnormal return itself is calculated during the event windows, the expected 

stock return is calculated by inputting a market-wide return observation for date 𝑡 into a model 

with coefficients that are estimated during the estimation period. These coefficients are estimated 

using the Ordinary Least Squares (OLS) method and the estimation period is typically the 120 

days ending 30 days before the event date, 𝑡=0. 

There are a number of different approaches used to estimate 𝐸(𝑟𝑖𝑡) with different 

estimation windows. While DSM used the estimation period 120 days ending 30 days prior to the 

start of the event window, MacKinlay (1997) and Brown and Warner (1985) use 250 and 239 

days prior to the event window. A sufficiently large estimation period is needed to capture the 

‘normal’ behavior of the security. I use two different expected returns models to calculate my 

𝐴𝑅𝑖𝑡 observations to provide a robustness check to each model. I also compare the R2 of both 

models to compare the effectiveness of the models in explaining variance of the stock return 

during the estimation window. The R2 values will give a sense of the fit for each model. I use the 

same estimation window as DSM, the 120-day period ending 30 days prior to the start of my 

event date. See the diagram below for a description of the relationship between the event 

windows, event date 0, and estimation period:  
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Figure 3. Timeline of Event Study 

 

 

 

 

 

 

In this paper, date 𝑡𝐸 denotes a date in the estimation period while date 𝑡 denotes a date in the 

event window(s).  

My first model and the main model used in most event studies literature is the Market 

Model (see Brown and Warner, 1985), in which OLS is used to estimate the coefficients of the 

regression of a security’s return on the market index return during the estimation period. These 

coefficient estimates are then used to calculate the expected return estimate 𝐸(𝑟𝑖𝑡) during the 

event window. I used the CRSP Equally Weighted index as my market index, which weights all 

stocks on the CRSP database equally, because it is a common index used in event studies and has 

been proven to be as effective as other popular market indices.25  The Market Model describes 

the expected return of security 𝑖 on date 𝑡 as a function of the market index return on date 𝑡: 

 𝐸(𝑟𝑖𝑡) =   𝛼̂ + 𝛽̂ 𝑟𝑚𝑡 [5] 

Where 𝑟𝑚𝑡 is the daily market return for date 𝑡 and 𝛼̂ and 𝛽̂ are the OLS estimates of the actual 

coefficients 𝛼 and 𝛽, calculated over the estimation period. 𝛼̂ and 𝛽̂ from equation [5] are 

calculated by regressing 𝑟𝑖𝑡𝐸
on the market index 𝑟𝑚𝑡𝐸

for the 120 observations collected from the 

estimation window, 𝑡𝐸1=-149 to 𝑡𝐸2=-30: 

 𝑟𝑖𝑡𝐸
=   𝛼 +  𝛽𝑟𝑚𝑡𝐸

+ 𝜀𝑖𝑡𝐸
 [6] 

MacKinlay (1997) states that usually, adding additional factors to the market model does not 

increase the R2 and thus the explanatory power of the model. Brown and Warner (1985) have 

also stated the Market Model is well specified for an event study and under most conditions, 

relatively powerful in rejecting the null hypothesis that abnormal returns are equal to zero when 

                                                        
25 MacKinlay (1997) describes the S&P 500 and CRSP Value Weighted Index as other popular indices. Brown and 

Warner (1980) compare the Value Weighted and Equally Weighted Index and find no significant differences 

between the rejection rates of the null that abnormal returns are equal to zero of either index for the Market Model 

and Fama-French Model, discussed below.  
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abnormal returns are actually present. However, I add another popular event study model as a 

robustness check to the Market Model.   

The Fama-French Model (Fama and French 1996) is the second expected returns model 

used, and adds two additional factors to the Market Model: the difference in returns between big-

cap and small-cap stocks on date 𝑡 and the difference between stocks with high and low book-to-

market ratio on date 𝑡. The expected return from the Fama-French Model for security 𝑖 on date 𝑡 

is calculated as: 

 𝐸(𝑟𝑖𝑡) = 𝛼̂ + 𝛽̂𝑖1𝑟𝑚𝑡 + 𝛽̂𝑖2𝑠𝑚𝑏𝑡 + 𝛽̂𝑖3ℎ𝑚𝑙𝑡 [7] 

where 𝑟𝑚𝑡 is the market return, using the CRSP Equally Weighted Index on day 𝑡 and 

𝑠𝑚𝑏𝑡 (“small minus big”) is the difference in returns between big-cap and small-cap stocks on 

date 𝑡.26 ℎ𝑚𝑙𝑡 (“high minus low”) is the difference between the returns of high book-to-market 

value stocks and low book-to-market value stocks on date 𝑡.27 Similar to the market model, 

coefficients 𝛼̂, 𝛽̂𝑖1, 𝛽̂𝑖2, an𝛽̂𝑖3d  are the OLS estimates of the coefficients in [8] below, calculated 

over the estimation period by regressing the stock return for firm 𝑖 on date 𝑡𝐸 on the factors 𝑟𝑚𝑡𝐸 , 

𝑠𝑚𝑏𝑡𝐸
, and ℎ𝑚𝑙𝑡𝐸

 on date 𝑡𝐸: 

 𝑟𝑖𝑡𝐸
= 𝛼 + 𝛽𝑖1𝑟𝑚𝑡𝐸

+ 𝛽𝑖2𝑠𝑚𝑏𝑡𝐸
+ 𝛽̂𝑖3ℎ𝑚𝑙𝑡𝐸

+ 𝜀𝑖𝑡𝐸
 [8] 

The Fama-French model takes into account the empirical observation that small-cap stocks and 

large book-to-market ratio (or “undervalued,” see footnote 27) stocks on average have a higher 

return than the market. In Buchheim et al.’s study, the R2 went up by nearly 25% when they used 

the Fama-French model instead of the Market Model. It is included as a robustness check to 

ensure that my results do not depend on the expected returns model used. 

Table 1 provides the values of the OLS estimates for coefficients of factors in the Market 

Model and Fama-French Model for different subsets of the data and the R2 of both models. It 

also includes the mean squared error term (the sum of squared εit in equations [6] and [8]). The 

Fama-French model increases the R2 for every sample and subsample by an average of 0.0328, 

so I will include it as a robustness check for my abnormal returns calculations in my event 

                                                        
26 Small-cap and big-cap refer to the size of a company’s market capitalization, which is defined as the number of 

total shares outstanding multiplied by the share price.   
27 Book value is the company’s assets minus its liabilities and market value has the same definition as market 

capitalization in footnote 26. Stocks with a high book-to-market value are often called “undervalued” because its 

balance sheet equity is greater than the value of its equity in the stock market. The stock market is therefore 

“undervaluing” the company’s equity. The reverse is true for stocks with low book-to-market value, which are 

“overvalued.”  
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studies. As described in the IV.2 Data – Sample Categorization Section above, since I separate 

my data into two samples “Payment” and “No Payment” and four subsamples “Payment – 

Frequent,” “Payment – Infrequent,” “No Payment – Frequent,” and “No Payment – Infrequent,” 

I also separate data into these six samples/subsamples when estimating the coefficients used to 

calculate 𝐸(𝑟𝑖𝑡). These categories and their respective OLS estimated coefficients are displayed 

in Table 1.   

 

Table 1. Estimation period average OLS estimates for coefficients in Market and Fama-French 

Models for all Samples and Subsamples   

 

Market Model               

Average 𝛼̂ 𝛽̂(mr) Root MSE R Squared N     

Payment 0.0004 0.6734 0.0180 0.1825 33     

No Payment 0.0005 0.8413 0.0181 0.2210 48     

Frequent 0.0004 0.7402 0.0159 0.2113 54     

Infrequent 0.0005 0.8381 0.0224 0.1932 27     

Payment /Frequent 0.0004 0.6656 0.0179 0.1754 27     

Payment /Infrequent 0.0004 0.7083 0.0184 0.2146 6     

No Payment /Frequent 0.0004 0.8149 0.0139 0.2472 27     

No Payment /Infrequent 0.0005 0.8752 0.0139 0.2472 21     

Fama-French Model               

Average 𝛼̂ 𝛽̂𝑖1(mr) 𝛽̂𝑖2(SMB) βi3 (HML) Root MSE R Squared N 

Payment 0.0004 0.7200 -0.2643 -0.3387 0.0178 0.2131 33 

No Payment 0.0005 0.9371 -0.3262 -0.4138 0.0178 0.2667 48 

Frequent 0.0004 0.8603 -0.3977 -0.4448 0.0156 0.2480 54 

Infrequent 0.0007 0.8254 -0.1075 -0.2600 0.0221 0.2387 27 

Payment /Frequent 0.0004 0.7313 -0.2522 -0.3287 0.0177 0.2027 27 

Payment /Infrequent 0.0007 0.6695 -0.3187 -0.3835 0.0182 0.2602 6 

No Payment /Frequent 0.0003 0.9893 -0.5431 -0.5609 0.0135 0.2933 27 

No Payment /Infrequent 0.0007 0.8699 -0.0472 -0.2247 0.0232 0.2326 21 
 

V.3 Event Study Methodology – Calculating 𝐴𝑅𝑖𝑡  

To reiterate equation [4], the abnormal return for security 𝑖 on date 𝑡 is the difference 

between its actual return 𝑟𝑖𝑡 and its expected return 𝐸(𝑟𝑖𝑡) on date 𝑡 (which will be different 

depending on which expected return model used): 

 𝐴𝑅𝑖𝑡 =  𝑟𝑖𝑡 − 𝐸(𝑟𝑖𝑡) [4] 

where 𝐸(𝑟𝑖𝑡) could be calculated by either the Market Model or the Fama-French Model. The 

abnormal return for both the Market Model and the Fama-French Model are as follows: 
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Market Model Abnormal Return: 

 𝑀𝑀𝐴𝑅𝑖𝑡 = 𝑟𝑖𝑡 − (𝛼̂ +  𝛽̂𝑟𝑚𝑡
) [9] 

Fama-French Model Abnormal Return: 

 𝐹𝐹𝑀𝐴𝑅𝑖𝑡 = 𝑟𝑖𝑡 − (𝛼̂ + 𝛽̂𝑖1𝑟𝑚𝑡 + 𝛽̂𝑖2𝑠𝑚𝑏𝑡 + 𝛽̂𝑖3ℎ𝑚𝑙𝑡)  [10] 

In this section, 𝑀𝑀𝐴𝑅𝑖𝑡 and 𝐹𝐹𝑀𝐴𝑅𝑖𝑡 are simply written as “𝐴𝑅𝑖𝑡” for simplicity.  

 

V.4 Event Study Methodology – Calculating Performance Variables 

After calculating the abnormal returns for each date 𝑡={-3,-2,-1,0,1,2,3} in the event 

windows from both the Market Model and Fama-French Model, I calculate three descriptive 

variables from these abnormal returns: (1) Average Abnormal Returns (AARt) (2) Cumulative 

Average Abnormal Returns (CAARt2-t1) and (3) Cumulative Abnormal Returns (CARi,t2-t1). 

These will be referred to as “performance variables” throughout my paper. Usage of these three 

variables is common in event studies (see Brown and Warner 1985, MacKinlay 1997, and 

Buchheim et al. 2001) because they take into account the change in stock returns of a given 

sample both across securities in the sample and across days of the event window.  

The average abnormal returns (AARt) are the average daily returns of all stocks in a 

sample on date 𝑡 in the event window. This is commonly called a cross-sectional return 

calculation in event study literature: 

 

AARt =
1

𝑁
 ∑ 𝐴𝑅𝑖𝑡

𝑁

𝑖=1

 

[11] 

where 𝑁 is the number of securities in each given sample and 𝐴𝑅𝑖𝑡 is the return of stock 𝑖 on day 

𝑡. The AARt is used to calculate the Cumulative Average Abnormal Returns (CAARt2-t1) by 

summing the AARt’s across different event windows when they are more than one day long. 

This allows us to capture the cross-sectional effects over the entire window: 

 

 CAARt2−t1 =  ∑ AARt

𝑡2

𝑡=𝑡1

 
[12] 

where 𝑡1 to 𝑡2 represents event window (t1,t2) and AARt is the average abnormal return across 

securities in a sample on date 𝑡, as defined above. To answer Question I and determine if there is 

an abnormal return across days of the event window as a result of the settlement announcement, I 

test whether or not CAARt2-t1 is significantly greater than zero in different event windows. If 

there was no stock price jump as a result of the settlement announcement in a sample, then the 
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performance variables AARt and CAARt2-t1 for the sample should equal zero. The Cumulative 

Abnormal Returns (CARi,t2-t1) are the daily returns of stock 𝑖 summed over the event window: 

 

CARi,t2−t1 =  ∑ 𝐴𝑅𝑖𝑡

𝑡2

𝑡=𝑡1

 
[13] 

where 𝑡1 to 𝑡2 represents event window (t1,t2) and ARit is the return of stock 𝑖 on day 𝑡, as 

defined above. To answer the second part of Question II regarding the effect of drug sales 

percentage on abnormal returns, I regress CARi,t2-t1 onto each settlement’s drug sales percentage 

of generic firm annual sales.  

 

VI. Hypothesis Testing – t-test 

To answer Question I, I test whether or not the performance variable, CAARt2-t1, for each 

window (t1,t2) for each sample is significantly different from zero. I will use three parametric 

tests (t-test, Patell test, and BMP test) and two non-parametric tests (sign test and rank test) as a 

robustness to check to ensure that the significance of my results does not depend on the statistical 

test I choose. For detailed calculations for the Patell test, BMP test, sign test, and rank test, 

please see the Appendix A. It is important to remember that parametric tests assume that the 

distribution stock returns 𝑟𝑖𝑡 and therefore 𝐴𝑅𝑖𝑡 (𝐴𝑅𝑖𝑡  =  𝑟𝑖𝑡 –  𝐸(𝑟𝑖𝑡)) are independent and 

identically distributed (i.i.d.) random variables.  

 The first set of null and alternative hypotheses that I test relate to the variable CAARt2-t1, 

the cumulative average abnormal returns of all securities across my event windows: 

H0: CAARt2-t1 = 0 [14] 

H1: CAARt2-t1 > 0 

Since CAARt2-t1 is constructed by summing AARt across event window(s) (t1,t2), as described in 

[12], I use the mean, variance, and distribution assumptions of AARt to construct the test 

statistics regarding CAARt2-t1. In Brown and Warner’s simulation (1985) of 250 samples with 50 

securities in each sample, the abnormal returns for individual securities did not resemble a 

normal distribution, with a higher skewness and kurtosis than typically seen under normality. 

However, taking the sample means of the 250 samples, Brown and Warner (1985) found that 

“departures from normality are less pronounced for cross-sectional mean excess returns than for 

individual security excess returns, as would be expected under the Central Limit Theorem 

(CLT).” The CLT states that if sample observations are i.i.d. with finite mean and variance, then 
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the distribution of the sample mean converges to a normal distribution no matter what the 

underlying distribution of the data is, as long as the sample size is large enough. Therefore, the 

above H0 tests whether or not the sample mean across a window – the average abnormal return 

across all securities in a sample – is equal to zero and can be tested using typical t-test/z-tests as 

with any normal distribution. Assuming all of my sample sizes are large enough, the CLT allows 

us to assume that the distribution of CAARt2-t1 follows a normal distribution, 𝑁(0, 𝜎2(CAAR
t2-t2

). 

To construct the variance of cumulative average returns across window (t1,t2), 

𝜎2(CAAR
t2-t2

)., I first construct the variance of AARt on date 𝑡. Since AARt is the cross-sectional 

mean of 𝐴𝑅𝑖𝑡, assuming that 𝑟𝑖𝑡 and therefore 𝐴𝑅𝑖𝑡 is i.i.d. for large samples, the variance of 

AARt can be written as: 

 
𝜎2(AARt) =   

∑ 𝜎2(𝐴𝑅𝑖𝑡)𝑁
𝑖=1

𝑁2
 

[15] 

The actual variance 𝜎2(𝐴𝑅𝑖𝑡) can be approximated with the sample variance of 𝐴𝑅𝑖𝑡 on date 𝑡𝐸  

during the estimation period: 𝑆𝐴𝑅𝑖𝑡𝐸

2
. The variance of AARt can therefore be estimated as: 

 
𝜎2(AARt)̂ =   

𝑆𝐴𝑅𝑖𝑡𝐸

2

𝑁
 

[16] 

where N is the number of observations in the sample and 𝑆𝐴𝑅𝑖𝑡𝐸

2 is the variance of the sample of 

stock returns over the estimation period. I acknowledge that there may be some additional 

variance in addition to the term above due to the sampling error of my 𝐸(𝑟𝑖𝑡) model and 

estimating coefficients, but if the estimation period is large enough, the sampling error should 

approach zero and can be ignored in the calculation of the test statistic (MacKinlay 1997). It is 

also possible to calculate the variance of AARt directly with the standard error of AARt 

observations over the estimation period. To calculate the standard deviation of the sample mean: 

 

𝜎(AARt)̂ = 𝑆AARtE
=  √ ∑ (AARtE

− AAR̅̅ ̅̅ ̅̅ )2/120

𝑡𝐸2= −30

𝑡𝐸1= −149

  

[17] 

where AAR̅̅ ̅̅ ̅̅ =
1

120
 ∑ AARtE

−30
−149 , which is the average per-day abnormal return during the 

estimation period (average across all securities in a sample and average across all days of the 

estimation period) and 𝑆𝐴𝐴𝑅𝑡𝐸
 is the average per-day standard deviation of the sample during the 
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estimation period (Brown and Warner 1985, Buchheim et al 2001).28 This method calculates the 

variance of AARt based on its daily standard deviation from the mean of AARt across all days of 

the estimation period, using this standard error as a proxy for the true standard of the AARt 

distribution. Buchheim et al. calls this the “time series method” of calculating variance. 

 Since CAARt2-t1 is the sum of the AARt terms across the days of the event window, the 

variance of CAARt2-t1 equals the sum of 𝜎2(AARt)across the event window (t1,t2), assuming 

that the 𝐴𝑅𝑖𝑡’s, and therefore AARt’s, are i.i.d:  

 

 𝜎2(CAARt2-t1) = ∑ 𝜎2(AARt)

t2

t=t1

 
[18] 

The standard deviation of CAARt2-t1 can be written as (using the equation for 𝜎(AARt)̂  from 

above): 

 𝜎(CAARt2−t1)̂ =  𝜎(AARt) ∗ √(𝑡𝐸2 − 𝑡𝐸1 + 1)

= √ ∑
(AARtE

− AAR̅̅ ̅̅ ̅̅ )
2

120

𝑡𝐸2= −30

𝑡𝐸1= −149

) ∗ (𝑡𝐸2 − 𝑡𝐸1 + 1) 

[19] 

where (𝑡𝐸2 − 𝑡𝐸1 + 1) is the number of days in estimation window (tE1,tE2). I can write test statistic to 

test the null hypothesis regarding CAARt2-t1 in [14] as: 

 
𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐1  =  

CAARt2-t1

𝜎(CAARt2-t1)
 

[20] 

This test is called the “Crude Dependence Adjustment” by Brown and Warner (1980) because it 

averages the abnormal return of all securities in a sample for a given day 𝑡, testing AARt, and 

thus accounting for correlation between securities and cross-sectional dependence by using the 

averages of abnormal returns across all securities in a sample. 

 In addition, to test whether or not there is a significant difference in the CAARt2-t1 

observations between two different samples, the second set of null and alternative hypothesis can 

be written as: 

 H0: CAARt2-t1, Sample 1 – CAARt2-t1, Sample 2  = 0 [21] 

H1: CAARt2-t1, Sample 1 – CAARt2-t1, Sample 2  > 0 

                                                        
28 See Brown and Warner (1985, 7) or Brown and Warner (1980, 251) for this calculation.  
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Assuming that the two samples are not correlated, the standard error of the difference of 

CAARt2-t1 between the two samples can be calculated as: 

 𝜎(CAARt2−t1,Sample 1 – CAARt2−t1,Sample 2)̂

= 𝑆(CAARt2−t1,Sample 1– CAARt2−t1,Sample 2 )

= √
𝜎2(CAARt2−t1,Sample 1 )

𝑁𝑆𝑎𝑚𝑝𝑙𝑒 1
+

𝜎2(CAARt2−t1,Sample 2 )

𝑁𝑆𝑎𝑚𝑝𝑙𝑒 2
 

[22] 

 

where 𝜎2(CAARt2−t1) for each sample is calculated in the same way as in [18] and [19]. The test 

statistic to test the difference in CAARt2-t1 between samples can be written as: 

 
𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐2 =

CAAR
t2-t1, Sample 1  – CAAR

t2-t1,  Sample 2

𝜎(CAAR
t2-t1, Sample 1  – CAAR

t2-t1,  Sample 2
)
 

[23] 

 Finally, to answer Question II regarding whether or not the drug sales percentage of 

annual firm sales at the time of settlement is significant on the abnormal returns after the 

announcement of a settlement, I regress the CARi,t2-t1 observations onto the drug sales percentage 

for each settlement: 

 𝐶𝐴𝑅𝑖,𝑡2−𝑡1 = 𝛽0 + 𝛽1(𝑆𝑎𝑙𝑒𝑠𝑡) + 𝜖𝑖 [24] 

Where 𝑆𝑎𝑙𝑒𝑠𝑡 is equal to the percentage of the firm’s annual sales that the drug’s annual sales 

make up: 

 
𝑆𝑎𝑙𝑒𝑠𝑡 =

𝐷𝑟𝑢𝑔 𝑆𝑎𝑙𝑒𝑠𝑡

𝐹𝑖𝑟𝑚 𝑆𝑎𝑙𝑒𝑠𝑡
 

[25] 

OLS estimators, 𝛽0̂ and 𝛽1̂, are used to estimate the true coefficients, 𝛽0 and 𝛽1: The null and 

alternative hypotheses regarding whether the estimated coefficient of sales, 𝛽2̂, is significantly 

different from zero are: 

H0:  𝛽2̂ = 0 [26] 

H1:  𝛽2̂ > 0 

The test statistic to test the hypotheses above can be written as: 

 
𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐3 =

 β2̂

𝑆𝐸( β2̂)
 

[27] 

Where 𝑆𝐸(𝛽2̂) can be calculated as: 
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𝑆𝐸(𝛽2̂) = √
𝑉𝑎𝑟(𝜖𝑖)

∑ CARi,t2-t1
2N

i=1

 

[28] 

 

VII.1 Results – Payment Group and Asymmetric Timing 

 This section presents test statistics for the hypotheses described above. In addition to t-

tests/z-tests, two other parametric tests, the Patell Test and BMP Test, and two non-parametric 

tests, the Sign Test and Rank Test, are included. Each test has certain advantages over the t-test 

and is included as a robustness check for the significance of the data. Please see Appendix A for 

detailed calculations and explanations of the tests statistics for the four other tests used.  

Table 2 reports the CAARt2-t1 values for the Payment group for all event windows, the 

standard error, and the test statistics/ p-values for all three parametric and two non-parametric 

hypothesis tests. The test statistics in the table correspond to the null and alternative hypotheses 

from [14] adopted for the Payments sample: 

H0: CAARt2-t1, Payments = 0 [29] 

H1: CAARt2-t1, Payments > 0 

For every event window, the CAARt2-t1 is significantly different from zero to at least the 10% 

significance level for both the Market Model and the Fama-French Model. I can therefore reject 

the null from [14] and conclude that there is a significant stock price hike for settlements with 

payments. This is consistent with my initial hypothesis that settlements with a reverse payment 

are anticompetitive because the payment distorts the normal negotiation of the entry date. This is 

also consistent with DMS’s results.  

However, a puzzling trend in my Payments sample is that the magnitude of the CAARt2-t1 

values for windows (-3,0), (-2,0), and (-1,0) appear to be higher than the CAARt2-t1 values for 

windows (0,1), (0,2), and (0,3). On average between the Market Model and Fama-French 

Models, there is a 0.92% higher return in the window (-3,0) than the window (0,3), 0.49% higher 

return in (-2,0) than (0,2), and 0.33% higher return in (-1,0) than (1,0). A difference in magnitude 

between pre-event and post-event abnormal returns implies market anticipation prior to the 

announcement at 𝑡=0, as higher abnormal returns are appearing before the settlement is 

announced. 

Table 3 displays the differences between CAARt2-t1 observations for pre-event and post-

event windows. For example, “3 days pre- / post-event” is the difference in CAARt2-t1 between   
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Table 2. Event study results (CAARt2-t1) for settlements with an indication of payment and test statistics/p-values to test H0: CAARt2-t1, 

Payment = 0 

 

N=33     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test p-value 

Sign  

Test p-value 

Rank 

Test p-value 

Market Model                       

(0,0) 0.45% 0.0033 1.37* 0.0855 1.77** 0.0373 1.87** 0.0308 1.10 0.1368 1.60* 0.0559 

(-1,+1) 1.79% 0.0057 3.12*** 0.0009 2.99*** 0.0015 2.25** 0.0122 1.10 0.1368 1.94** 0.0270 

(-2,+2) 2.15% 0.0074 2.91*** 0.0018 2.93*** 0.0017 2.23** 0.0129 1.79** 0.0366 1.80** 0.0366 

(-3,+3) 2.71% 0.0088 3.09*** 0.0010 2.79*** 0.0030 2.27** 0.0115 2.14** 0.0162 1.89** 0.0301 

(-3,0) 2.05% 0.0066 3.10*** 0.0010 1.97** 0.0243 1.52* 0.0637 0.75 0.2278 1.75** 0.0412 

(-2,0) 1.55% 0.0057 2.70*** 0.0035 1.67** 0.0446 1.33* 0.0924 -0.30 0.3825 1.15 0.1261 

(-1,0) 1.28% 0.0047 2.73*** 0.0031 1.96** 0.0253 1.64* 0.0509 0.05 0.4803 1.47* 0.0713 

(0,+1) 0.96% 0.0047 2.06** 0.0196 2.92*** 0.0018 2.34*** 0.0095 2.14** 0.0162 2.03** 0.0218 

(0,+2) 1.06% 0.0057 1.85** 0.0321 3.15*** 0.0008 2.26** 0.0120 0.75 0.2278 2.10** 0.0185 

(0,+3) 1.11% 0.0066 1.68** 0.0470 2.61*** 0.0046 2.19** 0.0143 1.44* 0.0745 1.56** 0.0608 

Fama-French Model                       

(0,0) 0.42% 0.0032 1.31* 0.0947 1.61* 0.0537 1.71** 0.0436 1.08 0.1394 1.47* 0.0718 

(-1,+1) 1.78% 0.0056 3.20*** 0.0007 2.81*** 0.0025 2.15** 0.0157 1.43* 0.0762 1.79** 0.0379 

(-2,+2) 2.08% 0.0072 2.90*** 0.0019 2.75*** 0.0030 2.02** 0.0219 1.08 0.1394 1.57* 0.0596 

(-3,+3) 2.38% 0.0085 2.81*** 0.0025 2.40*** 0.0082 1.92** 0.0273 1.43* 0.0762 1.40* 0.0822 

(-3,0) 1.85% 0.0064 2.89*** 0.0019 1.61* 0.0537 1.22 0.1110 0.39 0.3497 1.35* 0.0892 

(-2,0) 1.49% 0.0056 2.68*** 0.0037 1.49* 0.0681 1.12 0.1317 0.04 0.4850 0.94 0.1742 

(-1,0) 1.26% 0.0045 2.78*** 0.0027 1.78** 0.0375 1.48* 0.0698 0.39 0.3497 1.39* 0.0829 

(0,+1) 0.93% 0.0045 2.06** 0.0197 2.80*** 0.0026 2.33*** 0.0098 1.43* 0.0762 1.84** 0.0341 

(0,+2) 1.01% 0.0056 1.82** 0.0345 2.99*** 0.0014 2.12** 0.0172 2.13** 0.0167 1.93** 0.0276 

(0,+3) 0.95% 0.0064 1.48* 0.0690 2.36*** 0.0091 1.94** 0.0262 0.39 0.3497 1.23 0.1101 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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the windows (-3,0) and (0,3). In order to formally statistically test the differences between pre-

event and post-event windows, I would not be able to use the standard error calculations from 

[22] because I cannot assume that the correlation between pre-event returns and post-event 

returns for the same sample of securities is zero. Therefore, to test whether the difference 

between pre- and post-event CAARt2-t1’s are significantly different from zero, the 

𝜎(CAAR
t2-t1, Sample 1 – CAAR

t2-t1,  Sample 2
) from the test statistic in [23] would have to be calculated as: 

 𝜎(CAAR
t2-t1, pre-event – CAAR

t2-t1,  post-event
)= 

𝜎2(CAARt2-t1, pre-event)+𝜎2(CAARt2-t1, post-event) - 2𝑐𝑜𝑣( CAARt2-t1, pre-event,CAARt2-t1, post-event) 

[30] 

 

Table 3. Difference between Pre- and Post-Event Date CAARt2-t1’s for settlements with 

indication of payment  

Degrees of freedom (df) 64       

Event Window CAARt2-t1, Pre-Event 

CAARt2-t1, Post-

Event 

Difference in 

CAARs 

Market Model       

3 days pre- / post-event  2.05% 1.11% 0.94% 

2 days pre- / post-event  1.55% 1.06% 0.49% 

1 days pre- / post-event  1.28% 0.96% 0.32% 

Fama-French Model       

3 days pre- / post-event  1.85% 0.95% 0.90% 

2 days pre- / post-event  1.49% 1.01% 0.48% 

1 days pre- / post-event  1.26% 0.93% 0.33% 

    

To construct a test statistic for the difference between pre-and post-event CAAR’s, I 

would need an estimate for the covariance in [25] that is very difficult to mathematically write 

out. However, the magnitudes between pre- and post-event windows are noticeably different up 

to 0.94% for the 3 days pre-/post-event windows. This asymmetry in the timing of returns is an 

interesting trend that is not present in the brand firm’s stock return data from DSM’s study. 

The asymmetric timing of abnormal returns can also be seen in the difference between 

the Payments and No Payments groups. Table 4 displays the difference between the CAARt2-t1, 

Payments and CAARt2-t1, No Payments and test statistics to test the null hypothesis that the difference is 

equal to zero: 

H0: CAARt2-t1, Payments – CAARt2-t1, No Payments = 0 [31] 

H1: CAARt2-t1, Payments – CAARt2-t1, No Payments  > 0 
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Table 4. Difference between CAARt2-t1’s for settlements with and without an indication of payment and test statistics/p-values to test 

H0: CAARt2-t1, Payments – CAARt2-t1, No Payments  = 0 

 

df = 79                 

Event 

Window 

CAARt2-t1, 

Payments 

CAARt2-t1, 

No Payments 

Difference 

in CAARs 

Var(CAARt2-

t1, Payments) 

Var(CAARt2-

t1, No Payments) 

SE (CAARt2-t1, 

Payments - CAARt2-t1, 

No Payments) t-statistic2 p-value 

Market Model               

(0,0) 0.45% 0.58% -0.13% 0.0004 0.0007 0.0051 -0.26 0.6022 

(-1,+1) 1.79% 0.32% 1.47% 0.0011 0.0024 0.0090 1.63* 0.0535 

(-2,+2) 2.15% -0.05% 2.20% 0.0018 0.0032 0.0109 2.01** 0.0239 

(-3,+3) 2.71% 0.05% 2.66% 0.0025 0.0026 0.0114 2.34** 0.0109 

(-3,0) 2.05% -0.08% 2.13% 0.0014 0.0020 0.0092 2.31** 0.0117 

(-2,0) 1.55% -0.11% 1.66% 0.0011 0.0014 0.0079 2.11** 0.0190 

(-1,0) 1.28% -0.02% 1.30% 0.0007 0.0002 0.0051 2.54*** 0.0065 

(0,+1) 0.96% 0.93% 0.03% 0.0007 0.0014 0.0071 0.04 0.4841 

(0,+2) 1.06% 0.64% 0.42% 0.0011 0.0020 0.0086 0.49 0.3127 

(0,+3) 1.11% 0.71% 0.40% 0.0014 0.0026 0.0099 0.40 0.3451 

Fama-French Model               

(0,0) 0.42% 0.60% -0.18% 0.0003 0.0004 0.0043 -0.42 0.6622 

(-1,+1) 1.78% 0.34% 1.44% 0.0010 0.0012 0.0074 1.94** 0.0280 

(-2,+2) 2.08% 0.04% 2.04% 0.0017 0.0023 0.0099 2.06** 0.0213 

(-3,+3) 2.38% 0.15% 2.23% 0.0024 0.0029 0.0114 1.95** 0.0274 

(-3,0) 1.85% 0.01% 1.84% 0.0014 0.0024 0.0095 1.94** 0.0280 

(-2,0) 1.49% -0.06% 1.55% 0.0010 0.0010 0.0072 2.16** 0.0169 

(-1,0) 1.26% 0.04% 1.22% 0.0007 0.0009 0.0062 1.97** 0.0262 

(0,+1) 0.93% 0.90% 0.03% 0.0007 0.0008 0.0060 0.05 0.4801 

(0,+2) 1.01% 0.70% 0.31% 0.0010 0.0012 0.0074 0.42 0.3378 

(0,+3) 0.95% 0.74% 0.21% 0.0014 0.0016 0.0085 0.25 0.4016 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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The difference between the Payments and No Payments sample is significant only in the 

windows prior to the event date, (-3,0), (-2,0), and (-1,0). These results suggest that the effect of 

a payment on the stock returns surrounding a settlement announcement is only significant prior 

to the actual settlement announcement date. This result is unexpected, because if Payments had a 

positive impact on CAARt2-t1, it should be distributed through all event windows – a result that 

DSM found for the brand firm. Therefore, it seems that there is another factor that must be 

influencing investors’ reactions to the settlements before the terms are announced.  

 Reputation could be another factor influencing positive pre-event date abnormal returns 

surrounding settlements. One main difference between brand firms and generic firms involved in 

Paragraph IV settlements is the frequency at which the firms settle: over 50 brand firms settled 

the 81 settlements but only 12 generic firms settled the 81 settlements in total. This difference is 

significant in terms of the behavior of stock returns, because an important factor for how the 

stock market responds to a settlement is the reputation of the firm in terms of its propensity to 

settle. The Frequent and Infrequent characteristic of each settling firm serves as a proxy for this 

reputation/propensity to settle. As I describe in my Data – Sample Categorization section, I 

selected the firms that each settle more than 10% of the total dataset. Frequent settlers are TEVA, 

ACT/WPI, MYL, and BRL, which collectively settle 54 out of 81 settlements. I separated my 

dataset into four subgroups (shown in Figure 2), Payments/Frequent (N=27), 

Payments/Infrequent (N=6), No Payments/Frequent (N=27), and No Payments/Infrequent 

(N=21), and repeated the calculations from the Event Study Methodology section for each 

subsample. I then tested the same hypotheses in [14] to see if the CAARt2-t1 observations for each 

sample are significantly different from zero. 

Tables 5 and 6 show the CAARt2-t1 observations for settlements with and without 

payments settled by frequent settlers. In both tables, the test statistics and p-values correspond to 

the null and alternative hypotheses from [14] for the samples Payment/Frequent settlers and No 

Payment/Frequent settlers. Similar to Table 2, Tables 5 and 6 also include test statistics for the 

five different hypothesis tests that I use. The results in Table 5 suggest that I can reject the null 

that CAARt2-t1, Payments/Frequent = 0 in the Payments sample with frequent settlers for all windows. 

The results in Table 5 seem to mirror the results for the Payments sample as a whole, with 

CAARt2-t1 observations that are slightly higher in magnitude. Table 6 shows some significant 

returns (-2,2), (-3,3), and (-1,1), at different levels of significant depending on whether the 
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Table 5.  Event study results (CAARt2-t1) for settlements with an indication of payment settled by frequent settlers (TEVA, WPI/ACT, 

MYL, BRL) and test statistics/p-values to test H0: CAARt2-t1, Payments/Frequent  = 0 

 

N=27     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) 0.58% 0.0034 1.73** 0.0417 1.97** 0.0244 1.96** 0.0252 1.20 0.1143 1.72** 0.0434 

(-1,+1) 2.55% 0.0058 4.38*** <.0001 3.80*** <.0001 2.83*** 0.0023 1.98** 0.0242 2.76*** 0.0032 

(-2,+2) 2.93% 0.0075 3.90*** <.0001 3.70*** 0.0001 2.75*** 0.0030 2.75*** 0.0030 2.62*** 0.0048 

(-3,+3) 3.38% 0.0089 3.80*** <.0001 3.34*** 0.0004 2.69*** 0.0036 2.75*** 0.0030 2.43*** 0.0081 

(-3,0) 2.51% 0.0067 3.73*** 0.0001 2.30** 0.0106 1.69** 0.0458 1.20 0.1143 2.12** 0.0178 

(-2,0) 2.13% 0.0058 3.66*** 0.0001 2.35* 0.0930 1.80** 0.0360 0.43 0.3323 1.97** 0.0253 

(-1,0) 1.85% 0.0048 3.88*** <.0001 2.68*** 0.0037 2.17** 0.0152 0.82 0.2065 2.14** 0.0170 

(0,+1) 1.29% 0.0048 2.71*** 0.0034 3.36*** 0.0004 2.53*** 0.0057 2.75*** 0.0030 2.46*** 0.0075 

(0,+2) 1.39% 0.0058 2.38*** 0.0086 3.56*** 0.0002 2.38*** 0.0086 1.20 0.1143 2.40*** 0.0087 

(0,+3) 1.45% 0.0067 2.16** 0.0154 3.10*** 0.0010 2.48*** 0.0066 1.59* 0.0560 1.96** 0.0259 

Fama-French Model                       

(0,0) 0.56% 0.0032 1.74** 0.0413 1.93** 0.0268 1.97** 0.0244 1.17 0.1207 1.77** 0.0389 

(-1,+1) 2.54% 0.0056 4.52*** <.0001 3.65*** 0.0001 2.73*** 0.0032 2.33*** 0.0100 2.58*** 0.0054 

(-2,+2) 2.88% 0.0072 3.97*** <.0001 3.58*** 0.0002 2.57*** 0.0051 2.33*** 0.0100 2.52*** 0.0064 

(-3,+3) 3.09% 0.0086 3.60*** 0.0002 3.05*** 0.0011 2.39*** 0.0083 2.33*** 0.0100 2.10** 0.0187 

(-3,0) 2.29% 0.0065 3.53*** 0.0002 1.95** 0.0256 1.40* 0.0816 1.17 0.1207 1.75** 0.0414 

(-2,0) 2.05% 0.0056 3.66*** 0.0001 2.15** 0.0158 1.55* 0.0604 0.79 0.2158 1.79** 0.0374 

(-1,0) 1.80% 0.0046 3.92*** <.0001 2.45*** 0.0071 1.93** 0.0266 0.79 0.2158 1.96** 0.0256 

(0,+1) 1.30% 0.0046 2.84*** 0.0023 3.39*** 0.0003 2.68*** 0.0037 1.94** 0.0261 2.45*** 0.0077 

(0,+2) 1.39% 0.0056 2.48*** 0.0066 3.59*** 0.0002 2.39*** 0.0084 2.71*** 0.0033 2.48*** 0.0071 

(0,+3) 1.37% 0.0065 2.11** 0.0176 3.04*** 0.0012 2.41*** 0.0081 1.17 0.1207 1.92** 0.0284 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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Table 6. Event study results (CAARt2-t1) for settlements without an indication of payment settled by frequent settlers (TEVA, 

WPI/ACT, MYL, BRL) and test statistics/p-values to test H0: CAARt2-t1, No Payment/Frequent = 0 

 

N=27     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) -0.02% 0.0037 -0.05 0.4786 -0.10 0.4590 -0.12 0.4505 -0.25 0.3998 -0.37 0.3567 

(-1,+1) 0.50% 0.0049 1.02 0.1551 0.87 0.1931 0.90 0.1854 1.29** 0.0988 1.18* 0.1192 

(-2,+2) 0.88% 0.0064 1.38* 0.0832 1.39* 0.0818 1.22* 0.1111 0.90 0.1833 1.26** 0.1052 

(-3,+3) 0.92% 0.0075 1.22 0.1111 1.37* 0.0855 1.23* 0.1093 0.90 0.1833 0.75 0.2278 

(-3,0) 0.59% 0.0057 1.04 0.1482 1.11 0.1340 1.13* 0.1289 0.52 0.3024 0.49 0.3113 

(-2,0) 0.33% 0.0049 0.67 0.2519 0.49 0.3118 0.58 0.2805 0.13 0.4476 0.47 0.3213 

(-1,0) 0.06% 0.0038 0.16 0.4378 -0.07 0.4714 -0.05 0.4809 0.52 0.3024 -0.11 0.4580 

(0,+1) 0.42% 0.0040 1.05* 0.1473 1.06 0.1445 1.26** 0.1032 1.67*** 0.0470 1.29** 0.0986 

(0,+2) 0.53% 0.0049 1.09* 0.1385 1.25* 0.1059 1.01* 0.1558 0.52 0.3024 0.95* 0.1728 

(0,+3) 0.31% 0.0057 0.54 0.2934 0.65 0.2573 0.56 0.2893 -0.25 0.3998 0.31 0.3777 

Fama-French Model                       

(0,0) 0.09% 0.0027 0.33 0.3693 0.22 0.4129 0.26 0.3958 0.85 0.1982 0.16 0.4364 

(-1,+1) 0.61% 0.0048 1.27** 0.1026 1.15 0.1251 1.12* 0.1313 1.23** 0.1087 1.44** 0.0762 

(-2,+2) 1.15% 0.0062 1.85** 0.0325 1.86** 0.0314 1.62** 0.0532 0.85* 0.1982 1.68** 0.0478 

(-3,+3) 1.16% 0.0073 1.58** 0.0570 1.70** 0.0446 1.50** 0.0675 0.85 0.1982 1.04* 0.1492 

(-3,0) 0.86% 0.0056 1.55* 0.0608 1.62* 0.0526 1.61** 0.0537 1.23** 0.1087 0.99 0.1614 

(-2,0) 0.53% 0.0049 1.09 0.1382 0.92 0.1788 1.04* 0.1491 0.85* 0.1982 0.88* 0.1896 

(-1,0) 0.23% 0.0039 0.59 0.2785 0.39 0.3483 0.41 0.3427 0.46 0.3219 0.37 0.3551 

(0,+1) 0.47% 0.0039 1.20** 0.1150 1.18 0.1190 1.45** 0.0740 2.00*** 0.0225 1.50** 0.0675 

(0,+2) 0.72% 0.0048 1.49** 0.0685 1.61* 0.0537 1.34** 0.0909 0.46 0.3219 1.38** 0.0855 

(0,+3) 0.40% 0.0056 0.71 0.2391 0.74 0.2297 0.64 0.2615 0.08 0.4693 0.47 0.3199 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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Market Model or Fama-French Model was used. These significant returns seem to be driven by 

returns in the windows, (0,1) and (0,2), after the event date. While settlements with payments 

settled by frequent settlers seem to generate very high abnormal returns in every window, 

settlements without payments seem to generate abnormal returns only in the windows following 

the event.    

To examine whether the effect of Payments were similar for settlements settled by 

frequent settlers and settlements settled by infrequent settles, I tested whether the difference 

between Payment and No Payment is significant conditional on Frequent or Infrequent. 

Beginning with the frequent settlers, I tested the difference between CAARt2-t1, Payment/Frequent and 

CAARt2-t1, No Payment/Frequent: 

H0: CAARt2-t1, Payments/Frequent – CAARt2-t1, No Payments/Frequent = 0 [32] 

H1: CAARt2-t1, Payments/Frequent – CAARt2-t1, No Payments/Frequent > 0 

The results of the hypothesis test above can be seen in Table 7. I can reject the null hypothesis in 

[32] for windows (-3,3), (-2,2), (-1,1), (-3,0), (-2,0), (-1,0) and (0,1). It seems that the abnormal 

returns in the former three windows are driven by the latter four. Therefore, the effect of 

Payments within the Frequent group is significantly positive in the windows pre-event date. To 

check if this effect is present within the Infrequent group, I conducted a similar series of tests as 

in equations [14] and [21] to check if CAARt2-t1, Payments/Infrequent, CAARt2-t1, No Payments/Infrequent, and 

the difference between them were statistically significant. The Payments/Infrequent group results 

not included in the text of this paper, but can be found in Appendix B. While there were some 

positive returns in windows (0,0) of the No Payments/Infrequent group (which will be discussed 

later in this section), there weren’t any positive returns in the Payments/Infrequent group. There 

were no statistically significant differences between Payments and No Payments settlements 

when settled by infrequent settlers, suggesting that both the effect of having a payment and the 

pre-event date timing of this effect are driven by settlements by the frequent settlers rather than 

the infrequent ones. Therefore, it seems that reputation of having a higher propensity to settle – 

tested by the variable, Frequent – influences (i) the positive abnormal returns of settlements with 

indications of payments and (ii) the asymmetric timing of abnormal returns occurring prior to the 

event date 0. 
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Table 7. Difference between CAARt2-t1’s for settlements with and without an indication of payment settled by frequent settlers and test 

statistics/p-values to test H0: CAARt2-t1, Payments/Frequent – CAARt2-t1, No Payments /Frequent = 0 

 

df=52                 

Event 

Window 

CAARt2 - t1, 

Payments/Frequent 

CAARt2-t1, No 

Payments/ Frequent 

Difference 

in CAARs 

Var(CAARt2-t1, 

Payments/ Frequent) 

Var(CAARt2-t1, 

No Payments/ Frequent) 

SE (CAARt2-t1, 

Payments/Frequent - 

CAARt2-t1, No 

Payments/ Frequent) t-statistic2 p-value 

Market Model               

(0,0) 0.58% -0.02% 0.60% 0.0003 0.0004 0.0050 1.20 0.1178 

(-1,+1) 2.55% 0.50% 2.05% 0.0009 0.0007 0.0076 2.69*** 0.0048 

(-2,+2) 2.93% 0.88% 2.05% 0.0015 0.0011 0.0098 2.08** 0.0212 

(-3,+3) 3.38% 0.92% 2.46% 0.0021 0.0015 0.0117 2.11** 0.0198 

(-3,0) 2.51% 0.59% 1.92% 0.0012 0.0009 0.0088 2.18** 0.0169 

(-2,0) 2.13% 0.33% 1.80% 0.0009 0.0007 0.0076 2.36** 0.0110 

(-1,0) 1.85% 0.06% 1.79% 0.0006 0.0004 0.0061 2.93*** 0.0025 

(0,+1) 1.29% 0.42% 0.87% 0.0006 0.0004 0.0062 1.40* 0.0837 

(0,+2) 1.39% 0.53% 0.86% 0.0009 0.0006 0.0076 1.13 0.1318 

(0,+3) 1.45% 0.31% 1.14% 0.0012 0.0009 0.0088 1.29 0.1014 

Fama-French Model               

(0,0) 0.56% 0.09% 0.47% 0.0003 0.0002 0.0042 1.12 0.1339 

(-1,+1) 2.54% 0.61% 1.93% 0.0009 0.0006 0.0074 2.61*** 0.0059 

(-2,+2) 2.88% 1.15% 1.73% 0.0014 0.0010 0.0096 1.81** 0.0380 

(-3,+3) 3.09% 1.16% 1.93% 0.0020 0.0015 0.0113 1.71** 0.0466 

(-3,0) 2.29% 0.86% 1.43% 0.0011 0.0008 0.0085 1.67* 0.0505 

(-2,0) 2.05% 0.53% 1.52% 0.0008 0.0006 0.0074 2.05** 0.0227 

(-1,0) 1.80% 0.23% 1.57% 0.0006 0.0004 0.0060 2.60*** 0.0061 

(0,+1) 1.30% 0.47% 0.83% 0.0006 0.0004 0.0060 1.38* 0.0867 

(0,+2) 1.39% 0.72% 0.67% 0.0009 0.0006 0.0074 0.90 0.1861 

(0,+3) 1.37% 0.40% 0.97% 0.0011 0.0009 0.0086 1.13 0.1318 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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Section VII.2 Results – Positive Returns in No Payment Group:  

For the sample of 48 settlements without an indication of reverse payment, I conducted a 

similar series of hypothesis tests to determine whether there is a significantly positive CAARt2-t1 

in any of the event windows. The null and alternative hypotheses format again follows [14], and 

I specifically test: 

H0: CAARt2-t1, No Payments = 0 [33] 

H1: CAARt2-t1, No Payments > 0 

I use the same five hypothesis tests for both the Market Model and Fama-French Model 

abnormal returns. The results of the event study for the No Payments sample as well as relevant 

test statistics/p-values are displayed in Table 8. After conducting the event study and hypothesis 

tests, I determined that I can reject the null hypothesis that CAARt2-t1, No Payments = 0 for every 

window except the event date itself, (0,0), and (0,1). While I can reject the null hypothesis for 

window (0,1) using every statistical test for both the Market Model and Fama-French Model, I 

can only reject the null hypothesis for (0,0) using the t-test for both 𝐸(𝑟𝑖𝑡) models. This result 

suggests that there may be some abnormal stock return effect due to the event, because the 

windows (0,0) and (0,1) are the closest windows to the settlement announcement and capture any 

immediate positive returns due to trading.29  This is an unexpected result, because I did not 

expect settlements without payments to generate any positive stock price jumps. In contrast, 

DSM’s event studies do not show any significant positive return in brand firm’s stock for any 

windows following the announcement of a settlement without payment. They therefore 

concluded that settlements without payments are not anticompetitive, because investors don’t 

respond in a way that suggests belief of higher-than-expected profits. In addition, DSM assumes 

that settlements without payments are not anticompetitive because they represent the same 

negotiation that would occur inside a courtroom, without the distortion of a reverse payment. 

                                                        
29 Panattoni (2009) uses only event windows (0,0) and (0,1) to capture abnormal return effects of patent litigation 

decisions, and stresses the importance in using both to account for time-of-day differences of news announcements.  
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Table 8. Event study results (CAARt2-t1) for settlements without an indication of payment and test statistics/p-values to test H0: 

CAARt2-t1, No Payment = 0 

 

N=48     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) 0.58% 0.0038 1.51* 0.0659 0.75 0.2279 0.85 0.1988 0.96 0.1682 0.89 0.1880 

(-1,+1) 0.32% 0.0070 0.46 0.3235 0.75 0.2256 0.79 0.2155 2.70*** 0.0035 1.09 0.1386 

(-2,+2) -0.05% 0.0081 -0.06 0.4752 0.77 0.2212 0.71 0.2386 -0.20 0.4226 0.41 0.3414 

(-3,+3) 0.05% 0.0072 0.07 0.4724 0.83 0.2044 0.71 0.2398 0.09 0.4626 -0.13 0.4489 

(-3,0) -0.08% 0.0065 -0.12 0.4508 0.37 0.3559 0.39 0.3495 0.09 0.4626 -0.45 0.3256 

(-2,0) -0.11% 0.0054 -0.21 0.4188 0.21 0.4189 0.24 0.4051 0.09 0.4626 -0.03 0.4884 

(-1,0) -0.02% 0.0021 -0.10 0.4619 0.04 0.4858 0.07 0.4739 1.54* 0.0618 0.17 0.4320 

(0,+1) 0.93% 0.0054 1.72** 0.0425 1.42* 0.0786 1.62* 0.0527 2.70*** 0.0035 1.79** 0.0375 

(0,+2) 0.64% 0.0064 0.99 0.1600 1.22 0.1117 1.18 0.1198 0.09 0.4626 1.07 0.1430 

(0,+3) 0.71% 0.0073 0.97 0.1664 1.10 0.1365 0.97 0.1656 -0.20 0.4226 0.73 0.2343 

Fama-French Model                       

(0,0) 0.60% 0.0037 1.64* 0.0504 0.98 0.1635 1.09 0.1379 1.22 0.1105 1.18 0.1209 

(-1,+1) 0.34% 0.0064 0.53 0.2969 1.04 0.1490 1.02 0.1539 1.51* 0.0652 1.24 0.1088 

(-2,+2) 0.04% 0.0089 0.05 0.4821 1.15 0.1251 1.04 0.1503 0.36 0.3607 0.73 0.2319 

(-3,+3) 0.15% 0.0100 0.15 0.4402 1.25 0.1056 1.04 0.1493 0.07 0.4731 0.26 0.3966 

(-3,0) 0.01% 0.0091 0.01 0.4956 0.77 0.2206 0.78 0.2176 0.36 0.3607 -0.07 0.4706 

(-2,0) -0.06% 0.0059 -0.10 0.4593 0.46 0.3228 0.50 0.3101 0.65 0.2593 0.23 0.4101 

(-1,0) 0.04% 0.0055 0.07 0.4707 0.43 0.3336 0.46 0.3229 0.94 0.1750 0.50 0.3097 

(0,+1) 0.90% 0.0052 1.74** 0.0409 1.53* 0.0630 1.78** 0.0374 2.67*** 0.0038 1.85** 0.0331 

(0,+2) 0.70% 0.0063 1.11 0.1340 1.60* 0.0548 1.57* 0.0581 0.36 0.3607 1.40* 0.0818 

(0,+3) 0.74% 0.0073 1.01 0.1566 1.37* 0.0853 1.21 0.1135 -0.22 0.4123 1.01 0.1573 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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However, I want to further investigate the assumption that settlements without payments 

are not anticompetitive. As I stated in Section III, there are two assumptions present in DSM’s 

paper: 

(1) Settlements without payments are not anticompetitive because they represent a fair 

negotiation of the settlement terms between the brand and generic firms and serve as a 

proxy for the expected patent length from a trial 

(2) A positive abnormal stock return indicates that an anticompetitive settlement has taken 

place 

DSM’s results support both of these assumptions, as they found significant positive abnormal 

returns for settlements with payments but not for settlements without payments. Assumption (1) 

is that settlements without payments are never anticompetitive because they represent the same 

negotiation process that would have occurred in a trial. However, using the EHHS theoretical 

framework in Activating Actavis and The Actavis Inference: Theory and Practice, I work out the 

threshold of entry date E at which the generic is willing to settle. 

Brand Firm (A) will settle if the following holds true (from Activating Actavis): 

 𝐸𝑀𝐴 + (𝑇 − 𝐸)𝐷𝐴 − 𝑋 > 𝑇[𝑃𝑀𝐴 + (1 − 𝑃)𝐷𝐴] − 𝐶𝐴 [34] 

Simplifying Equation [34], we get the same equation as [1] from the Literature Review section: 

 
𝐸 > 𝑃𝑇 +  

𝑋 − 𝐶𝐴

𝑀𝐴 − 𝐷𝐴
 

[15], same as [1] 

Generic Firm (B) will settle if the following holds true: 

 (𝑇 − 𝐸)𝐷𝐵 + 𝑋 > 𝑇[(1 − 𝑃)𝐷𝐵] −  𝐶𝐵 [36] 

Simplifying Equation [36], Equation [37] represents the maximum E at which the generic firm is 

willing to settle: 

 
𝐸 < 𝑃𝑇 +

𝐶𝐵 + 𝑋

𝐷𝐵
 

[37] 

where (using the same definitions as EHHS in Activating Actavis): 

𝑃 = Probability that brand firm A will win litigation 

𝑇 = Remaining patent lifetime 

𝑃𝑇 = Expected patent length that would prevail in court 

𝐸 = Settlement Entry Date 

𝑀𝐴 = Monopoly profits for Firm A  

𝐷𝐴 = Duopoly profits for Firm A 
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𝐷𝐵  = Duopoly profits for Firm B 

𝐶𝐴/𝐵  = Litigation Costs for Firm A/B 

𝑋 = Settlement payment size 

The left sides of equations [34] and [36] above represent the expected firm profits under a 

settlement with entry date, 𝐸. The right sides of the equations represent the expected firm profits 

under litigation. The brand (Firm A) and generic (Firm B) will both opt for a settlement if the 

expected profits of a settlement exceeds the expected profits of litigation. The resulting 𝐸 values 

in equations [35] and [37] therefore represent the thresholds of the entry date, 𝐸, under which 

both firms are willing to settle.  

Figure 4. Timeline for EHHS Theoretical Framework 

 

 

 

 

 

 

 

Figure 4 above shows a timeline of the dates in the model and the resulting 

monopoly/duopoly profits under the settled entry date, 𝐸. An assumption of the model is that 

after the generic enters, both the brand and generic firms compete in duopoly until the patent 

expiry date. In other words, there are no generic entrants that enter. As EHHS have described, 

this assumption is not always the case with reverse payment settlements. However, the only 

difference this makes for the model is the size of 𝐷𝐴 and 𝐷𝐵. If we relax the assumption that 

duopoly results after entry and allow for multiple generic firms to enter, 𝐷𝐴 and 𝐷𝐵 decrease in 

size and the threshold 𝐸 value for the brand firm gets closer to 𝑃𝑇 (as seen in [35]) while the 

threshold 𝐸 value for the generic firm gets even further away from 𝑃𝑇 (seen in [37]).  

The generic will only settle if equation [37] holds true, and this settlement is 

anticompetitive if the entry date is greater than the expected patent length from a trial: 

 𝐸 > 𝑃𝑇 [38], same as [2] 

Combining [37] and [38], we can obtain the range of 𝐸 for which the generic will settle and the 

settlement obtained is anticompetitive: 

𝑇 = Remaining 

patent lifetime 

𝐸 = Settlement 

Entry Date 

𝑀𝐴 and 0𝐵 𝐷𝐴 and 𝐷𝐵 

𝑡=0 𝑇 = Patent 

expiry date 

Under settled entry 

date, 𝐸: 
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𝑃𝑇 < 𝐸 < 𝑃𝑇 +  

𝐶𝐵 + 𝑋

𝐷𝐵
 

[39] 

However, because 
𝐶𝐵+𝑋

𝐷𝐵
 is always positive, the generic is always willing to settle at a threshold of 

𝐸 greater than 𝑃𝑇. Even when there is no reverse payment (𝑋 = 0), E < PT +  
CB

DB
  and the 

threshold 𝐸 is greater than 𝑃𝑇. Therefore, it is possible for some settlements without payments to 

be anticompetitive because the generic firm is always willing to settle with values of 𝐸 that are 

above 𝑃𝑇. 

Figure 5 below shows the ranges of possible 𝐸 that the generic firm (depicted in red) and 

the brand firm (depicted in blue) are willing to settle when there is no payment. 

Figure 5. Thresholds of entry date 𝑬 for the Generic (red) and Brand (blue) firms for 

Settlements without Payments (𝑿 = 𝟎) 

 

 

 

 

We can see in the above figure that there is a range of settlements without payments that are 

anticompetitive, represented by the region shaded both red and blue to the right of 𝑃𝑇, that the 

generic and the brand firm are willing to settle. While in the case of the brand firm, it is possible 

to obtain a threshold of settlements that are not anticompetitive and actually have a range of 

𝐸 below 𝑃𝑇, the threshold at which generic firms are willing to settle is never below 𝑃𝑇 even 

when there is no payment.  

In addition, if we combine the generic firm [37] and brand firm [35] decisions, we obtain 

a range of 𝐸 for which they are both willing to settle: 

 
𝑃𝑇 +  

𝑋 −  𝐶𝐴

𝑀𝐴 − 𝐷𝐴
< 𝐸 < 𝑃𝑇 +

𝐶𝐵 + 𝑋

𝐷𝐵
 

[40] 

Subtracting 𝑃𝑇 from all sides, the time difference between the settled entry date 𝐸 and the 

expected entry date from a trail falls in a range of: 

 𝑋 −  𝐶𝐴

𝑀𝐴 − 𝐷𝐴
< 𝐸 − 𝑃𝑇 <

𝐶𝐵 + 𝑋

𝐷𝐵
 

[41] 

𝐸 –  𝑃𝑇 in equation [41] represents the additional delay from settlement rather than going to trial. 

It is therefore a measurement of how much more anticompetitive the settlement is than going to 

Generic: 𝐸 < 𝑃𝑇 +  
𝐶𝐵

𝐷𝐵
 

𝑃𝑇 
Brand: 𝑃𝑇 +  

− 𝐶𝐴

𝑀𝐴−𝐷𝐴
< 𝐸 
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trial. As EHHS have explained, when the payment size, 𝑋, is lower than the brand firm’s 

litigation costs, 𝐶𝐴, settlements may even result in a negative 𝐸 –  𝑃𝑇 and be less anticompetitive 

than the expected outcome of a trial. However, there is no scenario when the upper bound of the 

additional delay from settling, 𝐸 –  𝑃𝑇, is not positive. Therefore, even when 𝑋 = 0, there is 

always a range of 𝐸 –  𝑃𝑇 that is positive, which means that there is always a range of possible 

values for 𝐸 that are higher than 𝑃𝑇. Therefore, the assumption that settlements without 

payments never have anticompetitive effects may not be reasonable. This could be a theoretical 

argument as to why there are positive abnormal returns even in settlements without payments in 

the dataset of generic firm stock returns. 

 An alternative explanation to the theoretical argument presented above for the presence 

of positive abnormal results in windows (0,0) and (0,1) in the No Payments sample could also be 

firm reputation and market underestimation of settlement results. To formally test the effect of 

firm reputation in the No Payments sample, I examined the differences in CAAR’s of Frequent 

and Infrequent settlers conditional on No Payments. Out of the 48 No Payment settlements, 27 

were settled by frequent settlers and 18 were settled by infrequent settlers. I conducted a similar 

series of statistical tests on the null hypothesis in [14] regarding whether CAARt2-t1, No 

Payments/Frequent and CAARt2-t1, No Payments/Infrequent were significantly greater than 0 (Table 6 and Table 

9). The effect of Frequency in the No Payments group was not immediately clear, since there are 

some significant abnormal returns in windows near (0,0) and (0,1) for both groups: in windows 

(-3,0), (0,1), (0,2) for frequent settlers and in windows (0,0) and (0,1) for infrequent settlers. 

Many of these results also depended on which statistical test was used. Therefore, to test the 

effect of being a frequent settler on settlements without payments, I test the hypotheses:  

H0: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent = 0 [42] 

H1: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent > 0 

Table 10 displays the difference between CAARt2-t1, No Payments/Frequent and 
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Table 9. Event study results (CAARt2-t1) for settlements without an indication of payment settled by infrequent settlers and test 

statistics/p-values to test H0: CAARt2-t1, No Payment/Infrequent = 0 

 

N=21     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) 1.35% 0.0073 1.85** 0.0324 1.24 0.1067 1.32* 0.0931 1.74** 0.0409 1.66** 0.0493 

(-1,+1) 0.10% 0.0130 0.08 0.4694 0.16 0.4378 0.17 0.4334 2.61*** 0.0045 0.27 0.3923 

(-2,+2) -1.23% 0.0163 -0.76 0.2252 -0.42 0.3378 -0.39 0.3473 -1.32* 0.0938 -0.77 0.2202 

(-3,+3) -1.08% 0.0194 -0.56 0.2892 -0.30 0.3809 -0.22 0.4142 -0.88 0.1891 -0.99 0.1623 

(-3,0) -0.95% 0.0146 -0.65 0.2579 -0.70 0.2428 -0.74 0.2299 -0.44 0.3285 -1.17 0.1209 

(-2,0) -0.67% 0.0127 -0.53 0.2987 -0.25 0.4025 -0.24 0.4056 -0.01 0.4971 -0.54 0.2943 

(-1,0) -0.14% 0.0105 -0.13 0.4471 0.14 0.4462 0.15 0.4388 1.74 0.0409 0.36 0.3598 

(0,+1) 1.59% 0.0104 1.53* 0.0626 0.94 0.1745 1.00 0.1585 2.18** 0.0147 1.15 0.1258 

(0,+2) 0.79% 0.0127 0.62 0.2676 0.43 0.3355 0.58 0.2798 -0.44 0.3285 0.50 0.3081 

(0,+3) 1.23% 0.0147 0.84 0.2009 0.92 0.1792 0.83 0.2024 -0.01 0.4971 0.70 0.2430 

Fama-French Model                     

(0,0) 1.25% 0.0072 1.74** 0.0412 1.23 0.1093 1.25 0.1061 0.89 0.1871 1.56* 0.0606 

(-1,+1) -0.01% 0.0100 -0.01 0.4959 0.27 0.3936 0.27 0.3945 0.89 0.1871 0.22 0.4130 

(-2,+2) -1.39% 0.0161 -0.86 0.1938 -0.37 0.6443 -0.33 0.3704 -0.42 0.3364 -0.79 0.2151 

(-3,+3) -1.16% 0.0190 -0.61 0.2710 -0.05 0.5199 -0.02 0.4915 -0.86 0.1951 -0.78 0.2187 

(-3,0) -1.09% 0.0144 -0.76 0.2250 -0.67 0.7486 -0.68 0.2472 -0.86 0.1951 -1.22 0.1124 

(-2,0) -0.82% 0.0124 -0.66 0.2550 -0.35 0.6368 -0.32 0.3759 0.02 0.4942 -0.65 0.2583 

(-1,0) -0.21% 0.0102 -0.21 0.4183 0.22 0.5871 0.23 0.4091 0.89 0.1871 0.32 0.3748 

(0,+1) 1.45% 0.0102 1.42* 0.0775 0.98 0.1635 1.05 0.1470 1.76** 0.0390 1.05 0.1473 

(0,+2) 0.68% 0.0125 0.55 0.2925 0.59 0.2776 0.81 0.2077 0.02 0.4942 0.53 0.2991 

(0,+3) 1.18% 0.0144 0.82 0.2070 1.23 0.1093 1.09 0.1390 -0.42 0.3364 0.97 0.1674 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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Table 10. Difference between CAARt2-t1’s for frequent and infrequent settlers for settlements without an indication of payment and test 

statistics/p-values to test H0: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent  = 0 

 

df = 46                 

Event 

Window 

CAARt2 - t1, No 

Payments/ Frequent 

CAARt2-t1, No 

Payments/Infrequent 

Difference 

in CAARs 

Var(CAARt2-t1, 

No Payments/ Frequent) 

Var(CAARt2-t,  

No Payments/ Infrequent) 

SE (CAARt2-t1, 

No Payments/Frequent 

- CAARt2-t1 No 

Payments/ Infrequent) t-statistic2 p-value 

Market Model               

(0,0) -0.02% 1.35% -1.37% 0.0004 0.0011 0.0082 -1.6720^* 0.0510 

(-1,+1) 0.50% 0.10% 0.40% 0.0007 0.0035 0.0139 0.29 0.3866 

(-2,+2) 0.88% -1.23% 2.11% 0.0011 0.0056 0.0175 1.21 0.1162 

(-3,+3) 0.92% -1.08% 2.00% 0.0015 0.0079 0.0208 0.96 0.1710 

(-3,0) 0.59% -0.95% 1.54% 0.0009 0.0045 0.0157 0.98 0.1661 

(-2,0) 0.33% -0.67% 1.00% 0.0007 0.0034 0.0136 0.73 0.2345 

(-1,0) 0.06% -0.14% 0.20% 0.0004 0.0023 0.0112 0.18 0.4290 

(0,+1) 0.42% 1.59% -1.17% 0.0004 0.0023 0.0111 -1.05 0.8504 

(0,+2) 0.53% 0.79% -0.26% 0.0006 0.0034 0.0136 -0.19 0.5749 

(0,+3) 0.31% 1.23% -0.92% 0.0009 0.0045 0.0157 -0.58 0.7176 

Fama-French Model               

(0,0) 0.09% 1.25% -1.16% 0.0002 0.0011 0.0077 -1.5096^* 0.0689 

(-1,+1) 0.61% -0.01% 0.62% 0.0006 0.0021 0.0111 0.56 0.2891 

(-2,+2) 1.15% -1.39% 2.54% 0.0010 0.0054 0.0173 1.47* 0.0742 

(-3,+3) 1.16% -1.16% 2.32% 0.0015 0.0076 0.0204 1.14 0.1301 

(-3,0) 0.86% -1.09% 1.95% 0.0008 0.0044 0.0155 1.26 0.1070 

(-2,0) 0.53% -0.82% 1.35% 0.0006 0.0033 0.0134 1.01 0.1589 

(-1,0) 0.23% -0.21% 0.44% 0.0004 0.0022 0.0109 0.40 0.3455 

(0,+1) 0.47% 1.45% -0.98% 0.0004 0.0022 0.0109 -0.90 0.8135 

(0,+2) 0.72% 0.68% 0.04% 0.0006 0.0033 0.0134 0.03 0.4881 

(0,+3) 0.40% 1.18% -0.78% 0.0009 0.0044 0.0155 -0.50 0.6903 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, ^ denotes a left-tailed p-value
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CAARt2-t1, No  Payments/Infrequent, as well as the results of the testing the null hypothesis above. From 

the results in Table 10, I cannot reject the null in [42] for every window except (0,0) for both the 

Market and Fama-French Models. On the event date, (0,0), the CAARt2-t1 of the Infrequent group 

is actually higher than the CAARt2-t1 of the Frequent group, so the p-value displayed is calculated 

from conducting a left-tailed test (denoted with the symbol, ^). This suggests that on the event 

date itself, there is a significantly negative effect of Frequent on abnormal returns of the No 

Payment group. This is an unexpected result, because I would expect that the settlements that are 

negotiated by firms that frequently settle would garner more confidence from investors. 

However, if we examine the settlement rates of frequent and infrequent settlers, we see that most 

of the settlements with payments are settled by frequent settlers: 

Figure 6. Frequencies of Firms that Settle with Payment 

Since frequent settlers often seem to be involved with settlements with payments, perhaps the 

jump in stock prices for infrequent settlers of settlements without payments is due to a systematic 

underestimation of the Infrequent Settlers of settlements without payments before the official 

settlement announcement. The firm’s reputations as infrequent settlers coupled with the fact that 

these settlements don’t involve payments could cause the market to underestimate the terms of 

the settlement on the firm’s profits. On date (0,0), this market underestimation corrects when the 
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actual terms of the settlements without payments are released. This explanation implies that the 

stock price jump is not necessarily a result of anticompetitive settlements without payments, but 

rather the correction of market underestimation due to the negative reputation of the firm in 

terms of its propensity to settle. The positive (0,0) returns of No Payment/Infrequent settlements 

due to underestimation could be an alternative explanation to the theoretical argument presented 

above for the presence of positive abnormal returns in the No Payments sample.  

 

VII.3 Results – Effect of being a Frequent Settler 

 While the impact of firm reputation as a Frequent or Infrequent settler has been discussed 

in the context of the effect of Payments, I also examine the two Frequent and Infrequent groups 

and the difference between them as a whole. Tables 11 and 12 display the CAARt2-t1 

observations for the Frequent and Infrequent groups respectively, along with the test statistics to 

test the null from [14] that CAARt2-t1, Frequent and CAARt2-t1, Infrequent are not statistically 

significant. The results in Table 10 suggest that we can reject the null hypothesis that CAARt2-t1, 

Frequent is not statistically significant for every window under almost every test. The results in 

Table 11 only permit the rejection of the null that CAARt2-t1, Infrequent is not statistically significant 

for the windows (0,0) and (0,1). Interestingly, the positive abnormal returns present in the 

Frequent group resemble those in the Payment group from Section VII.1 (Table 2). There are 

also pre-event date returns in windows (-3,0), (-2,0), and (-1,0) that seem slightly higher in 

magnitude than post-event date returns in windows (0,3), (0,2) and (0,1). At the same time, the 

Infrequent group observations are similar to the No Payment group observations from section 

VII.2 (Table 8), with significant abnormal returns only occurring in the windows (0,0) and (0,1), 

depending on which 𝐸(𝑟𝑖𝑡)  model is used. These similarities will be explored further in detail 

later in this section in the context of possible correlation between Payment and Frequent, and No 

Payment and Infrequent. 
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Table 11. Event study results (CAARt2-t1) for settlements by frequent settlers (TEVA, ACT/WPI, MYL, BRL) and test statistics/p-

values to test H0: CAARt2-t1, Frequent = 0 

 

N=54     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) 0.28% 0.0022 1.30* 0.0967 1.32* 0.0933 1.41* 0.0789 0.67 0.2507 0.99 0.1615 

(-1,+1) 1.53% 0.0038 4.04*** <.0001 3.30*** 0.0005 2.76*** 0.0029 2.31** 0.0105 2.83*** 0.0026 

(-2,+2) 1.91% 0.0049 3.92*** <.0001 3.60*** 0.0002 2.87*** 0.0021 2.58*** 0.0049 2.78*** 0.0030 

(-3,+3) 2.15% 0.0058 3.73*** 0.0001 3.33*** 0.0004 2.82*** 0.0024 2.58*** 0.0049 2.29** 0.0116 

(-3,0) 1.55% 0.0044 3.56*** 0.0002 2.41*** 0.0079 2.04** 0.0207 1.22 0.1117 1.88** 0.0307 

(-2,0) 1.23% 0.0038 3.26*** 0.0006 2.01** 0.0222 1.82** 0.0346 0.40 0.3447 1.76** 0.0405 

(-1,0) 0.95% 0.0031 3.10*** 0.0010 1.85** 0.0325 1.67** 0.0479 0.95 0.1724 1.48* 0.0709 

(0,+1) 0.85% 0.0031 2.77*** 0.0028 3.13*** 0.0009 2.79*** 0.0027 3.13*** 0.0009 2.69*** 0.0039 

(0,+2) 0.96% 0.0038 2.55*** 0.0054 3.40*** 0.0003 2.48*** 0.0067 1.22 0.1117 2.41*** 0.0085 

(0,+3) 0.88% 0.0044 2.02** 0.0216 2.66** 0.0040 2.18** 0.0148 0.95 0.1724 1.64* 0.0514 

Fama-French Model                       

(0,0) 0.33% 0.0021 1.56* 0.0594 1.47* 0.0708 1.66** 0.0484 1.43* 0.0766 1.36* 0.0871 

(-1,+1) 1.58% 0.0037 4.33*** <.0001 3.33*** 0.0004 2.81*** 0.0025 2.52*** 0.0059 2.87*** 0.0023 

(-2,+2) 2.02% 0.0047 4.29*** <.0001 3.90*** 0.0000 3.01*** 0.0013 2.25** 0.0124 3.01*** 0.0015 

(-3,+3) 2.13% 0.0056 3.83*** <.0001 3.49*** 0.0002 2.79*** 0.0026 2.25** 0.0124 2.25** 0.0130 

(-3,0) 1.58% 0.0042 3.75*** <.0001 2.67*** 0.0038 2.09** 0.0182 1.70** 0.0445 1.96** 0.0259 

(-2,0) 1.29% 0.0036 3.54*** 0.0002 2.28** 0.0113 1.88** 0.0303 1.16 0.1239 1.91** 0.0288 

(-1,0) 1.01% 0.0030 3.42*** 0.0003 1.98** 0.0239 1.76** 0.0389 0.88 0.1886 1.66** 0.0499 

(0,+1) 0.89% 0.0030 2.99*** 0.0014 3.13*** 0.0009 3.01*** 0.0013 2.79*** 0.0026 2.83*** 0.0026 

(0,+2) 1.05% 0.0036 2.90*** 0.0019 3.61*** 0.0002 2.70*** 0.0035 2.25** 0.0124 2.76*** 0.0032 

(0,+3) 0.88% 0.0042 2.10** 0.0181 2.69** 0.0036 2.19** 0.0144 0.88 0.1886 1.69** 0.0461 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% level
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Table 12. Event study results (CAARt2-t1) for settlements by infrequent settlers and test statistics/p-values to test H0: CAARt2-t1, Infrequent 

= 0 

 

N=27     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) 1.02% 0.0060 1.69** 0.0453 1.08 0.1397 1.25 0.1065 1.54* 0.0617 1.49* 0.0696 

(-1,+1) -0.29% 0.0105 -0.28 0.3918 -0.39 0.3476 -0.42 0.3362 1.54* 0.0617 -0.34 0.3679 

(-2,+2) -1.26% 0.0135 -0.93 0.1753 -0.83 0.2042 -0.86 0.1939 -1.93** 0.0271 -1.25 0.1065 

(-3,+3) -0.91% 0.0160 -0.57 0.2851 -0.53 0.2991 -0.44 0.3310 -1.16 0.1239 -1.16 0.1238 

(-3,0) -0.74% 0.0121 -0.61 0.2698 -0.74 0.2298 -0.84 0.2018 -0.77 0.2206 -1.18 0.1206 

(-2,0) -0.76% 0.0105 -0.72 0.2345 -0.72 0.2356 -0.75 0.2268 -0.77 0.2206 -1.13 0.1304 

(-1,0) -0.39% 0.0085 -0.46 0.3240 -0.41 0.3414 -0.48 0.3171 0.77 0.2206 -0.17 0.4338 

(0,+1) 1.13% 0.0086 1.32* 0.0939 0.69 0.2440 0.81 0.2082 1.54* 0.0617 0.80 0.2114 

(0,+2) 0.52% 0.0105 0.50 0.3097 0.28 0.3905 0.42 0.3371 -0.77 0.2206 0.37 0.3551 

(0,+3) 0.86% 0.0121 0.71 0.2392 0.58 0.2799 0.58 0.2815 0.00 0.5000 0.38 0.3507 

Fama-French Model                       

(0,0) 0.93% 0.0060 1.54* 0.0614 0.94 0.1736 1.01 0.1557 0.81 0.2092 1.21 0.1142 

(-1,+1) -0.38% 0.0104 -0.36 0.3579 -0.31 0.6217 -0.31 0.3794 0.04 0.4846 -0.35 0.3646 

(-2,+2) -1.43% 0.0134 -1.06 0.1437 -0.87 0.8078 -0.88 0.1883 -1.50* 0.0665 -1.38* 0.0848 

(-3,+3) -1.08% 0.0158 -0.68 0.2474 -0.44 0.6700 -0.36 0.3583 -1.50* 0.0665 -1.16 0.1237 

(-3,0) -0.87% 0.0120 -0.73 0.2342 -0.76 0.7764 -0.84 0.1993 -1.50* 0.0665 -1.26 0.1045 

(-2,0) -0.88% 0.0104 -0.84 0.1997 -0.82 0.7939 -0.82 0.2070 -0.73 0.2321 -1.24 0.1092 

(-1,0) -0.42% 0.0085 -0.49 0.3106 -0.29 0.6141 -0.30 0.3841 0.42 0.3359 -0.10 0.4591 

(0,+1) 0.97% 0.0085 1.14 0.1273 0.58 0.2810 0.67 0.2505 1.19 0.1162 0.53 0.2973 

(0,+2) 0.37% 0.0103 0.36 0.3593 0.24 0.4052 0.36 0.3599 -0.35 0.3644 0.15 0.4394 

(0,+3) 0.71% 0.0120 0.59 0.2764 0.66 0.2546 0.63 0.2642 -1.12 0.1319 0.33 0.3708 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% level 
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To examine the significance of the effect of Frequent on abnormal returns, I take the 

difference between Frequent and Infrequent settlers conditional on settlements with payments 

and settlements without payments. Table 13 displays the difference between the Frequent and 

Infrequent groups conditional on Payments, as well as the test statistics to test the following 

hypotheses: 

H0: CAARt2-t1, Payments/Frequent – CAARt2-t1, Payments/Infrequent = 0 [43] 

H1: CAARt2-t1, Payments/Frequent – CAARt2-t1, Payments/Infrequent > 0 

The null above can be rejected at all the pre-event windows, (-3,0), (-2,0), and (-1, 0). Therefore, 

it seems that among settlements with payments, the reputation of the firm has a significant effect 

of abnormal returns in the windows prior to the event date 0. This result is again very similar to 

the results found in Section VII.1 regarding the effect of Payment on abnormal returns, 

conditional on the settler being Frequent (Table 7).  

 In contrast, Table 10 exhibits the difference between the returns from settlements settled 

by frequent and infrequent settlers conditional on No Payments. As discussed in Section VII.2, 

Table 10 displays the difference in observations and the results from conducting the following 

hypothesis tests: 

H0: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent = 0 [44] 

H1: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent > 0 

As discussed in Section VII.2, the reputation of the firm as a frequent settler seems to have no 

effect on most windows for settlements without payments except (0,0). On the event date, (0,0), 

Frequent actually seems to have a negative impact on abnormal stock returns. As discussed 

above in Section VII.2, this could be due to the systematic underestimation of settlement terms 

when an infrequent settler is involved in a settlement without payment, as the frequent settlers 

tend to target the settlements with payments.  

 Therefore, after testing the effects of Frequent, I found results that were very similar to 

the effects of Payments on abnormal stock returns. The results from Frequent – 

Infrequent|Payment (Table 13) and Payment – No Payment|Frequent (Table 7) showed similar 

significant effects of Frequent and Payment in pre-event windows, (-3,0), (-2,0), and (-1,0). 

Additionally, it seems that the presence of positive abnormal returns in (0,0) and (0,1) of the No 

Payments (Table 8) are driven by the infrequent settlers of these settlements (Table 10). 



52 

 

Table 13. Difference between CAARt2-t1’s for frequent and infrequent settlers for settlements with an indication of payment and test 

statistics/p-values to test H0: CAARt2-t1, No Payments/Frequent – CAARt2-t1, No Payments/Infrequent = 0 

 

df = 31                 

Event 

Window 

CAARt2 - t1, 

Payments/ Frequent 

CAARt2-t1, 

Payments/Infrequent 

Difference 

in CAARs 

Var(CAARt2-t1, 

Payments/Frequent) 

Var(CAARt2-t1, 

Payments/Infrequent) 

SE (CAARt2-t1, 

Payments/Frequent - 

CAARt2-t1, 

Payments/ Infrequent) t-statistic2 p-value 

Market Model               

(0,0) 0.58% -0.13% 0.71% 0.00030 0.00050 0.00969 0.73 0.2354 

(-1,+1) 2.55% -1.63% 4.18% 0.00091 0.00141 0.01640 2.55*** 0.0080 

(-2,+2) 2.93% -1.35% 4.28% 0.00152 0.00235 0.02117 2.02** 0.0260 

(-3,+3) 3.38% -0.32% 3.70% 0.00214 0.00332 0.02516 1.47* 0.0758 

(-3,0) 2.51% -0.01% 2.52% 0.00122 0.00240 0.02110 1.19 0.1215 

(-2,0) 2.13% -1.07% 3.20% 0.00092 0.00142 0.01646 1.94** 0.0308 

(-1,0) 1.85% -1.27% 3.12% 0.00061 0.00094 0.01339 2.33** 0.0132 

(0,+1) 1.29% -0.49% 1.78% 0.00061 0.00096 0.01350 1.32* 0.0982 

(0,+2) 1.39% -0.41% 1.80% 0.00092 0.00141 0.01643 1.10 0.1399 

(0,+3) 1.45% -0.44% 1.89% 0.00122 0.00190 0.01904 0.99 0.1649 

Fama-French Model               

(0,0) 0.56% -0.22% 0.78% 0.00028 0.00048 0.00954 0.82 0.2092 

(-1,+1) 2.54% -1.66% 4.20% 0.00085 0.00142 0.01639 2.56*** 0.0078 

(-2,+2) 2.88% -1.55% 4.43% 0.00142 0.00238 0.02118 2.09** 0.0225 

(-3,+3) 3.09% -0.81% 3.90% 0.00198 0.00337 0.02519 1.55* 0.0656 

(-3,0) 2.29% -0.10% 2.39% 0.00114 0.00178 0.01842 1.30 0.1016 

(-2,0) 2.05% -1.06% 3.11% 0.00085 0.00142 0.01635 1.90** 0.0334 

(-1,0) 1.80% -1.15% 2.95% 0.00057 0.00095 0.01337 2.21** 0.0173 

(0,+1) 1.30% -0.73% 2.03% 0.00057 0.00096 0.01345 1.51* 0.0706 

(0,+2) 1.39% -0.70% 2.09% 0.00085 0.00141 0.01631 1.28 0.1050 

(0,+3) 1.37% -0.92% 2.29% 0.00114 0.00190 0.01895 1.21 0.1177 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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 From these similarities in terms of both the presence of abnormal returns and the effects 

on abnormal returns between Payments and Frequent, it seems that the two variables may be 

correlated. To further investigate this idea, I tested the correlation between Payment and 

Frequent for all observations in my dataset. Figure 7 displays the correlation matrix between the 

variables Payment and Frequent, where correlation between Frequent and Payments, 𝜌𝐹𝑟𝑒𝑞,𝑃𝑎𝑦 is 

calculated as: 

 
𝜌𝐹𝑟𝑒𝑞,𝑃𝑎𝑦 =

𝐶𝑜𝑣(𝐹𝑟𝑒𝑞, 𝑃𝑎𝑦)

𝜎𝐹𝑟𝑒𝑞𝜎𝑃𝑎𝑦
 

[45] 

 

Figure 7. Pearson Correlation Matrix between Payment, Frequent, and their Interaction 

Term (N=81, df = 79) 

𝜌 Freq Pay Pay*Freq 

Freq    1.0000 0.2562 0.4953 

Pay  0.2562 1.0000 0.8518 

Pay*Freq 0.4953 0.8518 1.0000 

 

The correlation between Frequent and Payment, 𝜌𝐹𝑟𝑒𝑞,𝑃𝑎𝑦, is 0.2562. This is a moderate 

correlation coefficient that suggests there is some positive relationship between Payment and 

Frequent. To evaluate the significance of the positive relationship between Payment and 

Frequent, I tested the null hypothesis that this correlation coefficient is not significantly different 

from zero: 

H0: 𝜌𝐹𝑟𝑒𝑞,𝑃𝑎𝑦 = 0 [46] 

H1: 𝜌𝐹𝑟𝑒𝑞,𝑃𝑎𝑦 > 0 

After conducting a one-tailed t-test for the null hypothesis above, I found that I can reject the null 

to the 1.05%. These results imply that the variables Frequent and Payment are significantly 

correlated. The correlation between Payments and Frequent is also expected in the context of 

Figure 6, as more than 80% of all settlements with payments are settled by frequent settlers. 

Therefore, while I do not test the effects of the two variables in a multiple regression model, the 

effect of multicollinearity is present within my difference in means tests to examine the effects of 
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Payments and Frequent. The significant correlation between the two variables suggest that I 

cannot determine the isolated effects of either one separately. 

 Figures 8 and 9 below summarize the CAARt2-t1 observations of the four data subgroups 

(Payment/Frequent, Payment/Infrequent, No Payment/Frequent, and No Payment/Infrequent) for 

each event window. Figure 8 shows the abnormal returns when the Market Model is used while 

Figure 9 shows the abnormal returns when the Fama-French Model is used to calculate the 

expected return.  

Figure 8. Market Model CAARt2-t1 Observations for All Event Windows 
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Figure 9. Fama-French Model CAARt2-t1 Observations for All Event Windows 

 

As discussed above, it seems that that settlements with firms that are Frequent settlers almost 

always trigger positive stock returns, especially in the days right before the settlement 

announcement (𝑡=0). While it seems that the Payment/Infrequent group has negative abnormal 

returns in the event windows, these negative values are not significant and the small sample size 

(𝑁=6) could be affecting the precision of the estimation. The No Payment/Infrequent group 

shows negative returns pre-event date and positive returns post-event date, which forms the basis 

for the alternative explanation to the theoretical model in Section VII.2, suggesting that there 

may be a market underestimation of these settlements.  

 While the literature surrounding reverse payment settlements focus only on the presence 

of payments as an indication of anticompetitive activity, my study has shown that there may be 

an alternative explanation for the presence of abnormal stock returns surrounding settlements 

with payments. The reputation of the firm as having a high propensity to settle also seems to 

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

(0,0) (-1,+1) (-2,+2) (-3,+3) (-3,0) (-2,0) (-1,0) (0,+1) (0,+2) (0,+3)

Payment/Frequent (N=27) 0.56% 2.54% 2.88% 3.09% 2.29% 2.05% 1.80% 1.30% 1.39% 1.37%

Payment/Infrequent (N=6) -0.22% -1.66% -1.55% -0.81% -0.10% -1.06% -1.15% -0.73% -0.70% -0.92%

No Payment/Frequent (N=27) 0.09% 0.61% 1.15% 1.16% 0.86% 0.53% 0.23% 0.47% 0.72% 0.40%

No Payment/Infrequent (N=21) 1.25% -0.01% -1.39% -1.16% -1.09% -0.82% -0.21% 1.45% 0.68% 1.18%

C
u
m

u
la

ti
v
e 

A
v
er

ag
e 

A
b

n
o

rm
al

 R
et

u
rn

 (
C

A
A

R
t2

-t
1

)

Payment/Frequent (N=27)

Payment/Infrequent (N=6)

No Payment/Frequent (N=27)

No Payment/Infrequent (N=21)



56 

 

have a significant effect on the abnormal returns. Furthermore, the occurrence of significant 

stock returns only in the event windows before the actual event date suggests that reputation, and 

not the presence of payments alone, are influencing stock returns. This is due to the fact that 

while the terms of the settlement are theoretically not known until the event date itself, the 

reputation of the firm as a frequent settler is known as soon as patent litigation surrounding the 

drug is announced. At the same time, the two factors of the presence of a payment and the 

reputation of the settler as having a high propensity to settle seem to be significantly correlated 

and the effects from these two variables cannot be clearly distinguished. Therefore, these results 

challenge the conclusion that abnormal stock returns for settlements with payments prove that 

the settlements are anticompetitive, because these high stock returns could be due to the 

reputation of the firm itself. However, since payments and reputation are correlated, it is also 

difficult to reject the conclusion that high stock returns are caused by the presence of payments. 

Thus, in the case of the generic firm, high stock returns themselves are not enough to prove the 

presence of anticompetitive settlements. 

 

VII.4 Results – Drug Percentage of Firm Sales 

 In addition to the presence of a payment and the settling firm’s reputation, to answer 

Question II, I also test whether or not the percentage of firm annual sales that a drug’s annual 

sales comprises influences the abnormal return. Since the presence of a payment and whether the 

firm is a frequent settler are technically dummy variables, to avoid restricting my regression to 

have the same slope, I separated my data into the four subgroups mentioned in previous sections 

and then regressed the CARi,t2-t1, a firm-specific cumulative abnormal return, onto the percentage 

of total sales in year 𝑡 that the annual sales of the drug in year 𝑡 would comprise: 

 CARi,t2-t1 = 𝛽0 + 𝛽1(𝑆𝑎𝑙𝑒𝑠𝑡) + 𝜖𝑖 [24] 

Details about the regression can also be found in Section VI. Hypothesis Testing – t-test. For 

each subgroup, I tested the null and alternative hypotheses regarding the coefficient, 𝛽2̂: 

H0: 𝛽2̂ = 0 [26] 

H1: 𝛽2̂> 0 

Tables 14-17 display the results the OLS estimators of the coefficients 𝛽1 and 𝛽2, as well as the 

results of the hypothesis test above.  
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 From the results in Tables 14 and 15, it seems that I can reject the null that 𝛽2̂, the effect 

of drug sales percentage on abnormal returns, is zero for all windows prior to the event date for 

the Payment/Frequent group and only the windows (0,2) or (0,3) (depending on whether the 

Market Model or Fama-French are used) for the Payment/Infrequent group. Therefore, it seems 

that the relative sales of a drug also affects abnormal returns prior to the event date 𝑡=0 for 

settlements with payments that are settled by frequent settlers. The importance of the drug for the 

company’s revenue is therefore another factor that influences the presence of positive returns 

before the event date. If investors see that firms with a reputation for settling often are involved 

in a payment settlement, most of the positive effects on stock returns occur early on because 

investors don’t need to wait for the settlement to be officially published to begin trading at a 

higher price. The sales percentage of a drug playing a role in the pre-event date early stage 

therefore makes sense in this context, as most of the positive effects of settling have already 

occurred early on.  

 At the same time, from Table 15, it seems that the sales percentage of the drug does not 

play an important role in determining abnormal returns if the firm involved in the settlement 

does not have the reputation of being a frequent settler (the Payment/Infrequent group). This 

result is also expected, as there were no positive abnormal returns at all in the 

Payment/Infrequent sample. These results suggest that perhaps frequency is a more important 

determinant for abnormal returns, as neither the presence of a payment nor the percentage of 

drug sales seem to affect or induce positive stock returns for the infrequent group.  

 Tables 16 and 17 display the results of the regression and hypothesis test from [26] on the 

No Payment/Frequent and No Payment/Infrequent group. From Table 16, it seems that I can 

reject the null hypothesis that 𝛽2̂ is equal to zero for almost every window. For settlements 

without payments settled by frequent settlers, the drug sales percentage influences the presence 

of abnormal returns for almost every window except the windows that include days further away 

from the event date, such as (-3,0), (0,2), and (0,3), depending on which expected returns model 

is used. While the actual returns for the No Payment/Frequent group are not statistically 

significant from zero except in the windows (0,0) and (0,1), the sales percentage has a significant 

effect on these abnormal returns for almost every window. This could be due to the fact that 

when a frequent settler enters into a settlement, whether this settlement involves a payment or 

not, investors will respond positively when the drug brings in a higher revenue. However, the
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Table 14. Regression of CARi, t2-t1 observations on drug sales percentage of firm annual sales for 

settlements with payments settled by frequent settlers and test statistics/p-values to test H0: 𝛽1̂= 0 

 

N=27                   

Event 

Window CAARt2-t1 𝛽1̂  𝛽2̂ 

R 

Squared 

Adjusted 

R Squared SE (𝛽2̂) 

t- test 

statistic3 p-value 

Standardized  
𝛽1̂ 

Market Model                 

(0,0) 0.58% 0.0052 0.0015 0.0065 -0.0332 0.0037 0.41 0.3444 0.0808 

(-1,+1) 2.55% 0.0049 0.0500 0.5224 0.5033 0.0096 5.23*** <.0001 0.7227 

(-2,+2) 2.93% 0.0084 0.0507 0.4059 0.3822 0.0123 4.13*** 0.0002 0.6371 

(-3,+3) 3.38% 0.0141 0.0477 0.3176 0.2903 0.0140 3.41*** 0.0011 0.5636 

(-3,0) 2.51% 0.0080 0.0414 0.1616 0.1280 0.0189 2.19** 0.0189 0.4019 

(-2,0) 2.13% 0.0012 0.0488 0.2459 0.2157 0.0171 2.85*** 0.0043 0.4959 

(-1,0) 1.85% -0.0011 0.0473 0.3931 0.3689 0.0118 4.02*** 0.0003 0.6270 

(0,+1) 1.29% 0.0112 0.0042 0.0107 -0.0289 0.0081 0.52 0.3038 0.1035 

(0,+2) 1.39% 0.0125 0.0035 0.0032 -0.0367 0.0123 0.28 0.3904 0.0562 

(0,+3) 1.45% 0.0113 0.0078 0.0218 -0.0173 0.0105 0.75 0.2312 0.1477 

Fama-French Model                 

(0,0) 0.56% 0.0048 0.0020 0.0121 -0.0274 0.0035 0.55 0.2921 0.1102 

(-1,+1) 2.54% 0.0036 0.0529 0.5232 0.5042 0.0101 5.24*** <.0001 0.7234 

(-2,+2) 2.88% 0.0083 0.0499 0.3794 0.3546 0.0128 3.91*** 0.0003 0.6160 

(-3,+3) 3.09% 0.0119 0.0460 0.3055 0.2777 0.0139 3.32*** 0.0014 0.5527 

(-3,0) 2.29% 0.0049 0.0436 0.1656 0.1322 0.0196 2.23** 0.0176 0.4069 

(-2,0) 2.05% -0.0003 0.0505 0.2363 0.2057 0.0182 2.78*** 0.0051 0.4861 

(-1,0) 1.80% -0.0031 0.0511 0.3904 0.3660 0.0128 4.00*** 0.0003 0.6248 

(0,+1) 1.30% 0.0115 0.0037 0.0094 -0.0302 0.0077 0.49 0.3148 0.0972 

(0,+2) 1.39% 0.0134 0.0013 0.0004 -0.0395 0.0126 0.11 0.4584 0.0211 

(0,+3) 1.37% 0.0118 0.0044 0.0061 -0.0337 0.0113 0.39 0.3493 0.0781 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels       
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Table 15. Regression of CARi, t2-t1 observations on drug sales percentage of firm annual sales for 

settlements with payments settled by infrequent settlers and test statistics/p-values to test H0: 𝛽1̂= 0 

 

N=6                  

Event 

Window CAARt2-t1 𝛽1̂ 𝛽2̂ 

R 

Squared 

Adjusted 

R Squared SE(𝛽2̂) 

t-test 

statistic3 p-value 

Standardized  
𝛽2̂ 

Market Model                 

(0,0) -0.13% -0.0054 0.0272 0.0866 -0.1418 0.0441 0.62 0.2857 0.2943 

(-1,+1) -1.63% -0.0196 0.0219 0.0367 -0.2041 0.0561 0.39 0.3581 0.1915 

(-2,+2) -1.35% -0.0164 0.0192 0.0282 -0.2148 0.0563 0.34 0.3753 0.1678 

(-3,+3) -0.32% -0.0129 0.0646 0.1000 -0.1250 0.0969 0.67 0.2708 0.3162 

(-3,0) -0.01% -0.0065 0.0430 0.0442 -0.1948 0.0999 0.43 0.3447 0.2102 

(-2,0) -1.07% -0.0113 0.0043 0.0006 -0.2492 0.0861 0.05 0.4813 0.0249 

(-1,0) -1.27% -0.0131 0.0022 0.0009 -0.2489 0.0356 0.06 0.4774 0.0302 

(0,+1) -0.49% -0.0119 0.0469 0.2202 0.0252 0.0442 1.06 0.1739 0.4692 

(0,+2) -0.41% -0.0104 0.0421 0.3045 0.1307 0.0318 1.32 0.1282 0.5518 

(0,+3) -0.44% -0.0117 0.0488 0.4462 0.3078 0.0272 1.80* 0.0735 0.6680 

Fama-French Model                 

(0,0) -0.22% -0.0087 0.0436 0.2020 0.0025 0.0434 1.01 0.1857 0.4494 

(-1,+1) -1.66% -0.0209 0.0283 0.0565 -0.1794 0.0579 0.49 0.3252 0.2376 

(-2,+2) -1.55% -0.0192 0.0248 0.0909 -0.1364 0.0392 0.63 0.2808 0.3015 

(-3,+3) -0.81% -0.0161 0.0536 0.0931 -0.1337 0.0836 0.64 0.2783 0.3051 

(-3,0) -0.10% -0.0093 0.0548 0.0737 -0.1579 0.0971 0.56 0.3014 0.2715 

(-2,0) -1.06% -0.0132 0.0172 0.0121 -0.2349 0.0779 0.22 0.4179 0.1100 

(-1,0) -1.15% -0.0153 0.0250 0.0776 -0.1530 0.0430 0.58 0.2965 0.2786 

(0,+1) -0.73% -0.0143 0.0470 0.2731 0.0913 0.0384 1.23 0.1438 0.5226 

(0,+2) -0.70% -0.0147 0.0512 0.3736 0.2170 0.0331 1.54* 0.0987 0.6112 

(0,+3) -0.92% -0.0156 0.0424 0.3628 0.2034 0.0281 1.51 0.1029 0.6023 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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Table 16. Regression of CARi, t2-t1 observations on drug sales percentage of firm annual sales for 

settlements without payments settled by frequent settlers and test statistics/p-values to test H0: 𝛽1̂= 0 

 

N=27                   

Event 

Window CAARt2-t1 𝛽1̂ 𝛽2̂ 

R 

Squared 

Adjusted 

R Squared SE(𝛽2̂) 

t-test 

statistic3 p-value 

Standardized  
𝛽2̂ 

Market Model                 

(0,0) -0.02% -0.0042 0.0438 0.4395 0.4171 0.0099 4.43*** 0.0001 0.6630 

(-1,+1) 0.50% 0.0007 0.0460 0.1236 0.0885 0.0245 1.88** 0.0361 0.3515 

(-2,+2) 0.88% 0.0025 0.0677 0.1473 0.1132 0.0326 2.08** 0.0241 0.3838 

(-3,+3) 0.92% 0.0039 0.0574 0.0893 0.0528 0.0366 1.57* 0.0651 0.2988 

(-3,0) 0.59% 0.0004 0.0597 0.1722 0.1390 2.2800 0.03 0.2075 0.4149 

(-2,0) 0.33% -0.0042 0.0809 0.4451 0.4229 0.0181 4.48*** 0.0001 0.6672 

(-1,0) 0.06% -0.0039 0.0492 0.2197 0.1885 0.0185 2.65*** 0.0069 0.4687 

(0,+1) 0.42% 0.0005 0.0407 0.2121 0.1806 0.0157 2.59*** 0.0078 0.4605 

(0,+2) 0.53% 0.0025 0.0306 0.0491 0.0111 0.0269 1.14 0.1333 0.2216 

(0,+3) 0.31% -0.0007 0.0415 0.0767 0.0397 0.0288 1.44* 0.0811 0.2769 

Fama-French Model                 

(0,0) 0.09% -0.0032 0.0442 0.4441 0.4219 0.0099 4.47*** 0.0001 0.6664 

(-1,+1) 0.61% 0.0023 0.0414 0.0975 0.0614 0.0252 1.64* 0.0564 0.3123 

(-2,+2) 1.15% 0.0061 0.0585 0.1116 0.0761 0.0330 1.77** 0.0443 0.3341 

(-3,+3) 1.16% 0.0067 0.0537 0.0779 0.0410 0.0370 1.45* 0.0793 0.2791 

(-3,0) 0.86% 0.0025 0.0660 0.1991 0.1670 0.0265 2.49*** 0.0099 0.4462 

(-2,0) 0.53% -0.0023 0.0819 0.4316 0.4088 0.0188 4.36*** 0.0001 0.6570 

(-1,0) 0.23% -0.0022 0.0488 0.2107 0.1791 0.0189 2.58*** 0.0080 0.4590 

(0,+1) 0.47% 0.0013 0.0367 0.1801 0.1473 0.0157 2.34** 0.0137 0.4244 

(0,+2) 0.72% 0.0053 0.0207 0.0244 -0.0146 0.0262 0.79 0.2182 0.1563 

(0,+3) 0.40% 0.0010 0.0319 0.0476 0.0095 0.0285 1.12 0.1372 0.2182 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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Table 17. Regression of CARi, t2-t1 observations on drug sales percentage of firm annual sales for 

settlements without payments settled by infrequent settlers and test statistics/p-values to test H0: 𝛽1̂= 0 

 

N=21                   

Event 

Window CAARt2-t1 𝛽1̂ 𝛽2̂ 

R 

Squared 

Adjusted 

R Squared SE(𝛽2̂) 

t-test 

statistic3 p-value 

Standardized  
𝛽2̂ 

Market Model                 

(0,0) 1.35% -0.0020 0.0151 0.7785 0.7662 0.0019 7.95*** <.0001 0.8823 

(-1,+1) 0.10% 0.0007 0.0002 0.0003 -0.0552 0.0026 0.07 0.4708 0.0176 

(-2,+2) -1.23% -0.0053 -0.0058 0.1941 0.1493 0.0028 -2.08**^ 0.0260 -0.4406 

(-3,+3) -1.08% -0.0098 0.0015 0.0097 -0.0453 0.0036 0.42 0.3396 0.0986 

(-3,0) -0.95% -0.0064 -0.0023 0.0434 -0.0097 0.0026 -0.90 0.1891 -0.2083 

(-2,0) -0.67% -0.0022 -0.0050 0.2266 0.1837 0.0022 -2.30**^ 0.0170 -0.4761 

(-1,0) -0.14% 0.0020 -0.0047 0.2531 0.2116 0.0019 -2.47**^ 0.0119 -0.5031 

(0,+1) 1.59% -0.0034 0.0200 0.7634 0.7503 0.0026 7.62*** <.0001 0.8738 

(0,+2) 0.79% -0.0052 0.0143 0.7571 0.7436 0.0019 7.49*** <.0001 0.8701 

(0,+3) 1.23% -0.0055 0.0189 0.7139 0.6980 0.0028 6.70*** <.0001 0.8449 

Fama-French Model                 

(0,0) 1.25% -0.0013 0.0135 0.7204 0.7049 0.0020 6.81*** <.0001 0.8488 

(-1,+1) -0.01% 0.0018 -0.0019 0.0276 -0.0264 0.0027 -0.71 0.2420 -0.1662 

(-2,+2) -1.39% -0.0039 -0.0087 0.3298 0.2925 0.0029 -2.98**^ 0.0041 -0.5743 

(-3,+3) -1.16% -0.0065 -0.0027 0.0264 -0.0277 0.0038 -0.70 0.2469 -0.1625 

(-3,0) -1.09% -0.0059 -0.0042 0.1119 0.0626 0.0028 -1.51*^ 0.0747 -0.3345 

(-2,0) -0.82% -0.0028 -0.0059 0.2404 0.1982 0.0025 -2.39**^ 0.0141 -0.4903 

(-1,0) -0.21% 0.0032 -0.0066 0.3441 0.3076 0.0021 -3.07***^ 0.0033 -0.5866 

(0,+1) 1.45% -0.0028 0.0181 0.7382 0.7236 0.0025 7.12*** <.0001 0.8592 

(0,+2) 0.68% -0.0024 0.0106 0.6692 0.6508 0.0018 6.03*** <.0001 0.8180 

(0,+3) 1.18% -0.0019 0.0150 0.6252 0.6043 0.0027 5.48*** <.0001 0.7907 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, ^ denotes a left-tailed p-value 
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presence of the asymmetric timing of abnormal returns is not present here as it was in the 

Payment/Frequent group, because the positive returns are less “sure” or “expected” when the 

settlement does not involve a payment.  

 On the other hand, Table 17 shows that for the No Payment/Infrequent group, the sales 

percentage positively influences abnormal returns on and after the event date in the windows 

(0,0), (0,1), (0,2), and (0,3). However, sales percentage actually significantly negatively 

influences abnormal returns in the windows prior to the event date, (-3,0), (-2,0), and (-1,0). 

These results suggests that the greater the sales of a drug relative to the firm’s annual sales, the 

lower the abnormal returns are prior to the event date. Perhaps this result is due to the fact that 

when a drug has higher sales, and is therefore more important monetarily to a company, the 

market expects and wants the firm to enter into a settlement that involves a payment rather than 

one without a payment. This could be related to the possible market underestimation of the 

settlement seen in the alternative explanation to the presence of positive returns in the No 

Payments sample in Section VII.2. However, once the terms of the settlement are officially 

announced, this market underestimation corrects and sales once again positively influences the 

abnormal returns.  

 

VIII. Comparison to DMS’s Brand Firm Returns 

 While DSM did not divide their data into subgroups depending on whether the settlement 

involved a payment or not, I will analyze the Payment and No Payment samples of the generic 

firms in my dataset and compare them to the Payment and No Payment brand firms of DSM’s 

dataset.30 The first difference is that while it seems that the Payment groups of both the generic 

and brand firm involved significantly positive stock returns in all windows, the brand firm did 

not have the same pre-event date asymmetric pattern in their returns as the generics did.31 In 

addition, while there were no positive abnormal returns for settlements without a reverse 

payment for the brand firm, there were significantly positive returns in windows (0,0) and (0,1) 

for the generic firms on the opposite side of those settlements. Finally, the third difference is that 

while DSM found significantly positive differences between the returns from settlements with 

                                                        
30 Comparing to the data in tables on pages 41-44 of DMS’s paper.  
31 While DMS did not have event windows (-3,0), (-2,0), and (-1,0), they did have event windows (-3,3), (-2,2), (-

1,1) and (0,3), (0,2), (0,1). Since the CAARt2-t1’s for event windows (-3,3), (-2,2), and (-1,1) are merely the sum of 

the CAARt2-t1’s for (-3,0), (-2,0), (-1,0) and (0,3), (0,2), (0,1), I extrapolated what the values for (-3,0), (-2,0), (-1,0) 

would be.  
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payments and settlements without payments for the event date (0,0) and windows after the event 

date, (0,1), (0,2), and (0,3), I did not find significantly positive differences for the generic firms 

in these windows. In fact, I only found significantly positive differences between the stock 

returns for settlements with payments and settlements without payments in the windows before 

the event date, (-3,0), (-2,0), and (-1,0).  

 The first and third difference regarding the asymmetric timing of abnormal returns could 

be related to the reputation factor of generic firms. As described in the previous section, there are 

much fewer generic firms than brand firms that settle and therefore the firm’s reputation for 

having a high propensity to settle could be an important factor in the timing of abnormal returns. 

As described in Section VII.1 and VII.3, both the effect of Payment on frequent settlers and the 

effect of Frequency on settlements with payments present an asymmetric timing of abnormal 

returns earlier than the event date (Tables 7 and 12). Therefore, the effect of reputation combined 

with the presence of a payment could be the reason for this asymmetric timing in generic firms 

that is not present in brand firms.  

 The second difference, the presence of abnormal payments on dates (0,0) and (0,1) in no 

payment settlements, could be due to the generic entry date, 𝐸, threshold above the expected 

litigation entry date, 𝑃𝑇, as discussed in Section VII.2. It is interesting to note that if generic 

firms are involved on the other side of these same settlements without payments, then this 

threshold 𝐸 is similarly above 𝑃𝑇 for both the brand and generic firms and should represent 

higher-than-expected profits for both. Therefore, it is unexpected that the market doesn’t react to 

these no payment settlements the same way for the brand and generic firm. This could be due to 

the fact that the market is more sensitive with the generic firm’s stock returns since it is the 

generic firm that establishes this threshold of 𝐸 greater than 𝑃𝑇. An interesting study could result 

from the investigation of the correlations between generic and brand firms, and the implications 

for anticompetitive activity from these interactions.  

 

IX. Conclusion 

 This paper examines publicly available security price information for publicly traded 

generic firms involved in Paragraph IV ANDA settlements to (I) test how the settlement 

announcement affects the stock price of the generic firm and (II) examine what other factors 

besides the involvement of a payment in the settlement affect the generic stock prices. I found 

that on average, settlements with payments produce significantly positive abnormal stock returns 



64 

 

of approximately 1.6% in windows before and approximately 1% in windows after the event 

date, 𝑡=0. Settlements without payments produced positive abnormal returns only on the event 

date, 𝑡=0, of around 0.5% and in the window, (0,1), of 0.9%. Similarly, settlements that were 

settled by frequent settlers, Teva, Actavis/Watson, Mylan, and Barr Laboratories, had a 

significantly positive abnormal return of approximately 1.2% before the event date and 0.9% 

after the event date. Settlements that were settlement by infrequent settlers resulted in positive 

abnormal returns also only in the windows (0,0) and (0,1) of approximately 1% and 1.1% 

respectively. The difference between abnormal returns from settlements with and without 

payments were significant only in the windows prior to the event date, (-3,0), (-2,0), and (-1,0), 

of approximately 1.7%. Similarly, the difference between abnormal returns generated from 

frequent and infrequent settlers were also only significant in the same pre-event date windows 

above of approximately 1.9%. These results are in line with DSM’s results that many settlements 

with payments produce significant abnormal stock returns and are therefore anticompetitive. 

However, my results question which factor, the presence of a payment or the reputation of the 

settling firm, is responsible for these positive abnormal returns.  

 Most of the previous literature on this topic has focused on the following explanations for 

a stock price hike after the announcement of a reverse payment settlement: 

(i) The actual presence of an anticompetitive payment, 𝑋, that causes the settled entry 

date, 𝐸, to be greater than the expected entry date under litigation, 𝑃𝑇 

(ii) The firm’s reputation that causes confidence in the terms of the settlement for the 

firm’s profit 

(iii) A systematic market underestimation prior to the announcement of the settlement 

and a subsequent correction once the settlement is announced 

Only the first explanation, (i), implies that a positive stock price hike actually signals the 

presence of anticompetitive activity. While I found positive abnormal returns from settlements 

both with and without payments that support explanation (i) that there may be anticompetitive 

activity present, my study also shows that explanation (ii) is another possible cause for positive 

stock returns through the similar effects and high correlation of Payment and Frequent. At the 

same time, (iii) could also be a factor when looking at the negative impacts of Frequent on 

abnormal returns in the sample of settlements without payments. Therefore, while the presence 



65 

 

of anticompetitive activity could be indicated through the presence of significant abnormal stock 

returns in my study, it is not the only possible cause of these positive returns.  

 Furthermore, in regards to settlements without payments, I introduce a theoretical model 

building upon the EHHS model that shows that there is a range of equilibrium settlement entry 

dates, 𝐸, that are anticompetitive even when there is no payment involved in the settlement. This 

is due to the fact that the maximum 𝐸 threshold that the generic is willing to accept is higher than 

𝑃𝑇, the expected patent length/generic entry date under litigation. In a large portion of Hatch-

Waxman settlement literature, including the FTC v. Actavis case and the Actavis Inference that 

emerged from the Supreme Court opinions on the case, the expected outcomes from settlements 

without payments are assumed to be equivalent to the expected outcome from litigations. While 

this may be the case for the brand firm, the Activating Inference theoretical model adapted for 

the generic firm tells a different story. Even when there are no payments (𝑋 = 0), the generic is 

still willing to settle below a maximum threshold of 𝐸 that is above 𝑃𝑇. Therefore, the 

theoretical model demonstrates that even settlements without payments can be anticompetitive. 

This idea is supported in the data, as there are significantly positive abnormal returns in windows 

(0,0) and (0,1) for generic firms involved in settlements without payments.  

 At the same time, the percentage of a firm’s annual sales that the drug’s sales comprises 

is also an important factor that significantly influences the abnormal returns for settlements that 

are settled by frequent settlers, for settlements both with and without payments. While sales 

percentage is often thought of as positively influencing the anticompetitive effects of settlements 

with payments, its effects actually influences settlements settled by frequent settlers more so than 

merely settlements with payments. This is another indication of the importance of the reputation 

of the settling firm that is often ignored by literature regarding the anticompetitive effects of 

reverse payment settlements.  

 Therefore, when evaluating the anticompetitive implications of reverse payment 

settlements through stock return analysis, it is important to keep in mind that there are multiple 

other factors besides the presence of a reverse payment that could cause the a stock price hike on 

announcement day. Some of these other factors, such as firm reputation and sales percentage of 

the drug, do not directly support the conclusion that these settlements are anticompetitive. 

However, since many of these predictors are correlated, it is often difficult to either reject or 

affirm that significant security returns reveals anticompetitive behavior. Finally, when examining 
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the payments without settlements, the theoretical model that I propose adapted from EHHS 

suggest that we should not be looking at generic firms in the same way as brand firms, because 

generic firms are willing to accept an entirely different threshold of 𝐸. It is important to question 

the mere presence or lack of payment in these reverse-payment settlements as a direct indication 

of anticompetitive activity.  

  

X. Potential Issues in the Data 

While the sample sizes of the Payment/Frequent, No Payment/Frequent, and No 

Payment/Infrequent are larger, there are only six settlements in the Payment/Infrequent group. 

While I found no significant stock returns in most windows of this subsample, it could be due to 

the extremely small sample size. It is therefore difficult to make conclusions from the data of 

only this group.  

 In addition, 23 out of the 48 settlements without payments (approximately 48%) were 

announced as “confidential.” While the actual presence of a payment is not known, these 

settlements are labeled as No Payments because there was no indication of a payment. DSM uses 

a similar procedure in accounting for confidential settlements. While the stock market would not 

be responding to the settlements in the same way as a settlement announcement that outlined that 

there are no payments involved, there were no other ways to categorize these settlements. This 

could be another explanation for why there are positive abnormal returns in No Payments sample 

in windows (0,0) and (0,1), but it requires the assumption that some investors know confidential 

information that the rest of the market does not know.  
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Appendix A. Calculations for the Patell, BMP, Sign, and Rank Test 

  

Appendix A.1 Patell Test 

 The t-test statistics for the t-tests form the intuitive bases for the scaled/standardized 

abnormal returns used by Patell (1976) and Boehmer, Musumeci, and Poulsen (BMP) (1991). 

Scaled test statistics can better accommodate instances of heteroskedasticity in abnormal returns 

by standardizing each abnormal return by its own standard deviation before summing it into a 

test statistic. The Patell Standardized Abnormal Return , 𝑆𝐴𝑅𝑖𝑡, can be written as: 

 
SARit =

𝐴𝑅𝑖𝑡

𝑆𝐴𝑅𝑖𝑡

 
[A.1] 

where 𝐴𝑅𝑖𝑡 is the abnormal return for security 𝑖 on date 𝑡 and 𝑆𝐴𝑅𝑖𝑡
is the standard error 

calculated during the estimation period. Since 𝐴𝑅𝑖𝑡 is the difference between the actual stock 

return on date 𝑡, 𝑟𝑖𝑡, and the predicted stock return, 𝐸(𝑟𝑖𝑡), the standard error of 𝐴𝑅𝑖𝑡 can be 

calculated as the error variance of predicting 𝑟𝑖𝑡:  
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1
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̅̅ ̅̅ ̅̅ )

2

∑ (rmtE
− rmtE

̅̅ ̅̅ ̅̅ )
2tE2

tE1

] 
[A.2] 

where 𝑡𝐸2 and 𝑡𝐸2 are the beginning and ending dates of the estimation window and 𝑟𝑚𝑡𝐸
̅̅ ̅̅ ̅̅  is the 

mean of the market return during the estimation period.32 𝑠2
𝐴𝑅𝑖𝑡𝐸

is the variance of the sample of 

stock returns over the estimation period: 

 
𝑠2

𝐴𝑅𝑖𝑡𝐸
=

∑ 𝐴𝑅𝑖𝑡
2𝑡𝐸2

𝑡=𝑡𝐸1

(𝑡𝐸2 − 𝑡𝐸1 − 2)
 

[A.3] 

By standardizing each statistic with its own standard deviation first, the test ensures that that 

each abnormal return will have the same variance.  

                                                        
32 This calculation follows the general formula of calculating the error variance of predicting Y for a simple 

regression, 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 +  𝜖𝑖: 

𝑉𝑎𝑟 (𝑌0 − 𝑌0̂) = 𝜎2 [1 +
1

𝑛
+

(𝑋0 − 𝑋̅)2

∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1

]  

where 𝑋0is the particular value of 𝑋𝑖 for which we wish to predict 𝑌𝑖, and 𝑌0̂is that prediction (DeSalvo, 1971). In 

this case, the independent variable, 𝑋𝑖, is the market return. 

The standard error of the estimated value, 𝜎 is calculated as: 

𝜎̂ = [
∑ {𝑌𝑖 − 𝛼̂ − 𝛽̂𝑋𝑖)

2𝑛
𝑖=1

𝑛 − 2
] 
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 To test the first set of null and alternative hypothesis in [14] regarding CAARt2-t1, the 

Patell test calculates the test statistic as: 

 

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑃𝑎𝑡𝑒𝑙𝑙 =
1

√𝑁

1

√𝑄𝑡2−𝑡1

∑ ∑ 𝑆𝐴𝑅𝑖𝑡

𝑡2

𝑡=𝑡1

𝑁

𝑖=1

 

 

[A.4] 

where 𝑄𝑡2−𝑡1 is the variance of a single stock’s  return over the event window, (t1, t2): 

 
𝑄𝑡2−𝑡1 = (𝑡2 − 𝑡1 + 1)(

118

116
) 

[A.5] 

𝑄𝑡2−𝑡1 is the same for all the standardized stock returns in the sample per window (since the 

estimation period length is the same when calculating abnormal returns for every stocks). The 

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑃𝑎𝑡𝑒𝑙𝑙 is for an event window (t1,t2) and 𝑁 events in the sample. The test statistic 

follows the standard normal distribution.  

 

Appendix A.2 BMP Test  

 The BMP test (Boehmer, Muscumeci, Poulson, 1991) is a modified version of the Patell 

test that modifies the calculation of the standard deviation of ASARt and CSARt2-t1 by estimating 

it during the event period itself instead of during the estimation period. Since there is often the 

possibility of event-induced volatility, the BMP test adds a control to the Patell test to account 

for increases in event-induced volatility to avoid the t test’s tendency of underestimating of the 

standard error and Type I errors. Since the BMP Test is an extension of the Patell test in an 

attempt to correct the tendency to ignore event-induced volatility, it is included as a robustness 

check to the previous two statistical tests.  

The BMP test uses the same standardized variables as the Patell test and adjusts for 

changes in the standard deviations during the event window itself.  The standardized cumulative 

abnormal return can be calculated as: 

 
𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1  =

CARi,t2-t1

𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1
 

[A.6] 

where CARi,t2-t1 is calculated the same way as [13] and 𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1can be calculated as: 
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[A.7] 

where 𝑠𝐴𝑅𝑖𝑡
 is calculated the same way as above in the Patell test.  

The standard deviation calculation for the test statistic to test CAARt2-t1 in [14] can be written as: 

 

𝑠𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1

2 = √
1

𝑁 − 1
∑(𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1 −

𝑁

𝑖=1

𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅)2 

[A.8] 

where:  

 

𝑆𝐶𝐴𝑅̅̅ ̅̅ ̅̅ ̅ =  
1

𝑁
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𝑁
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[A.9] 

Therefore, the CAARt2-t1 test statistic to test the hypotheses in [14] is calculated as: 

 
𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝐵𝑀𝑃 =

∑ 𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1
𝑁
𝑖=𝑁

√𝑁 ∗ 𝑆𝑆𝐶𝐴𝑅𝑖,𝑡2−𝑡1

 
[A.10] 

The 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝐵𝑀𝑃 follows a standard normal distribution. The above calculations for the 

Patell and BMP test follow Cowan (2007)’s Eventus Guide formats.  

 

 Appendix A.3 Sign Test 

 As a final robustness check to the assumption that ARit’s are normally distributed, I also 

include two non-parametric tests in my study. The first is the generalized sign test (Cowan 

1992), which tests whether CAARt2-t1 is significantly different based on its probability to be 

positive or negative when drawn from the sample. The assumptions needed for the test are that 

the abnormal returns and cumulative abnormal returns are independent across securities and are 

symmetrically distributed about zero under the null hypothesis. If we define p as Prob[CAART2-

T1 ≥ 0.0], then the null and alternative hypotheses are for both performance variables:  

H0: p ≤ 𝑝̂ [A.11] 

H1: p > 𝑝̂ 

where 𝑝̂ is the percentage of positive returns for the performance variables calculated during the 

event window (tE1, tE2): 
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𝑝̂ =
1

𝑁
∑
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[A.12] 

 Under the null hypothesis in [14], when we expect the average CAARt2-t1 to be zero, the 

probability that it is positive should equal the proportion of positive returns observed during the 

estimation period. The sign test statistic can be written as: 

 
𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑔𝑛 =

(𝑤 − 𝑁𝑝̂)

√𝑁𝑝̂(1 − 𝑝̂)
 

[A.13] 

where w is the number of stocks with positive CAARtE2−tE1
 during the event period (tE1, tE2). N is 

the total number of securities in the sample and 𝑝̂ is defined above. The distribution of the test 

statistic should follow a normal distribution, N(0,1). Since an important assumption required for 

the sign test is that it the variables must be symmetric about zero, a significantly skewed sample 

may reduce the specificity of the test (MacKinlay, 1997). Therefore, the following rank test that 

symmetrizes the data points by design serves as a useful sensitivity check to the sign test.  

 

Appendix A.4 Rank Test 

The second non-parametric test that I include in my study is the rank test proposed by 

Corrado (1989). Let Kit denote the rank of an abnormal return data point (𝐴𝑅𝑖𝑡) within security 

𝑖’s dataset of abnormal returns within the combined estimation and event window, from 1 to the 

number of days in the combined periods. For every security, the number of ranks will equal the 

number of days in the estimation window plus the number of days in the event window: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 =   120 + (𝑡2 –  𝑡1 + 1)  

 

[A.14] 

By construction, for a given security, the average rank of Kit, 𝐾̃, is 
120+(𝑡2−𝑡1+1)

2
, where 120 is 

the number of days in the estimation window and (𝑡2 − 𝑡1 + 1) is the number of days in the 

event window. The null hypothesis in [14] that CAARt2-t1 is zero can be converted to a null 

hypothesis based on the rank of the abnormal return for security i on date t: 

H0: Kit = 𝐾̃ [A.15] 

H1: Kit > 𝐾̃ 

Where 𝐾̃ is the average rank of a given Kit: 

 
𝐾̃ =  

120 + (𝑡2 − 𝑡1 + 1)

2
 

[A.16] 

If there is on average no positive abnormal return, then the average CAARt2-t1 rank should equal 

the average rank, 𝐾̃. Therefore, the rank test statistic can be written as (Cowan, 2007): 
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𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑟𝑎𝑛𝑘 =  √(𝑡2 − 𝑡1 + 1) ∗

𝐾𝑡1,𝑡2
̅̅ ̅̅ ̅̅ ̅ − 𝐾̃

𝑆(𝐾)
 

[A.17] 

where 𝐾𝑡1,𝑡2
̅̅ ̅̅ ̅̅ ̅ is the average rank of Kit across the sample of N securities and across (𝑡2 − 𝑡1 + 1) 

days of the event window: 

 

𝐾𝑡1,𝑡2
̅̅ ̅̅ ̅̅ ̅ =  

1

(𝑡2 − 𝑡1 + 1)
∑

1

𝑁

𝑡2

𝑡=𝑡1

∑ 𝐾𝑖𝑡

𝑁

𝑖=1

 
[A.18] 

The standard deviation of 𝐾𝑡1,𝑡2
̅̅ ̅̅ ̅̅ ̅, 𝑆(𝐾), can be calculated as: 

 

𝑆(𝐾) =  √
∑ (𝐾𝑡

̅̅ ̅ −
120+(𝑡2−𝑡1+1)
𝑡=1 𝐾̃)2

120 + (𝑡2 − 𝑡1 + 1)
 

[A.19] 

Where 𝐾𝑡
̅̅ ̅ is the average rank across all stocks on date t of the combined estimation and event 

period: 

 

𝐾𝑡
̅̅ ̅ =  

1

𝑁
∑ 𝐾𝑖𝑡

𝑁

𝑖=1

 
[A.20] 

This procedure transforms the ARit data into a symmetric, normal distribution.33 Eventus 

software transforms the single-day test statistic into a CAAR test statistic simply by summing it 

across the event window similar to the way a scaled test statistic is summed across multiple days 

in the Patell test, assuming ranks of AR’s across different days in the event window are 

independent.34  

 

 

                                                        
33 Detailed calculations can also be found in Corrado (1989, 387-388). 
34 See Cowan (2007, 89) for full calculation details.  
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Appendix B. Additional Data Tables 

Table 18. Event study results (CAARt2-t1) for settlements with payments settled by infrequent settlers and test statistics/p-values to test 

H0: CAARt2-t1, Payments/Infrequent = 0 

 

N=6     Parametric Non-Parametric 

Event 

Window CAARt2-t1 

Standard 

Error 

t-test 

statistic1  p-value 

Patell Z 

statistic p-value 

BMP 

Test Z p-value 

Sign  

Test Z p-value 

Rank 

Test Z p-value 

Market Model                       

(0,0) -0.13% 0.0091 -0.14 0.4433 -0.03 0.4865 -0.06 0.4755 0.01 0.4946 0.12 0.4514 

(-1,+1) -1.63% 0.0153 -1.06 0.1439 -1.12 0.1306 -2.29** 0.0109 -1.62* 0.0527 -1.26 0.1042 

(-2,+2) -1.35% 0.0198 -0.68 0.2478 -0.97 0.1659 -1.55* 0.0605 -1.62* 0.0527 -1.29 0.1001 

(-3,+3) -0.32% 0.0235 -0.14 0.4458 -0.55 0.2909 -0.67 0.2520 -0.80 0.2110 -0.68 0.2481 

(-3,0) -0.01% 0.0200 -0.01 0.4982 -0.26 0.3959 -0.36 0.3592 -0.80 0.2110 -0.36 0.3585 

(-2,0) -1.07% 0.0154 -0.70 0.2435 -1.07 0.1430 -1.38* 0.0845 -1.62* 0.0527 -1.46* 0.0735 

(-1,0) -1.27% 0.0125 -1.02 0.1550 -1.12 0.1314 -2.99*** 0.0014 -1.62* 0.0527 -1.05 0.1479 

(0,+1) -0.49% 0.0126 -0.39 0.3492 -0.28 0.3896 -0.69 0.2459 -0.80 0.2110 -0.41 0.3408 

(0,+2) -0.41% 0.0154 -0.27 0.3947 -0.21 0.4187 -0.63 0.2647 -0.80 0.2110 -0.13 0.4474 

(0,+3) -0.44% 0.0178 -0.25 0.4024 -0.48 0.3151 -1.02 0.1543 0.01 0.4946 -0.48 0.3167 

Fama-French Model                       

(0,0) -0.22% 0.0090 -0.25 0.4033 -0.31 0.6217 -0.45 0.3272 0.05 0.4783 -0.27 0.3932 

(-1,+1) -1.66% 0.0154 -1.08 0.1406 -1.15 0.8749 -2.51*** 0.0061 -1.58* 0.0572 -1.17 0.1225 

(-2,+2) -1.55% 0.0199 -0.78 0.2180 -1.16 0.8770 -2.15** 0.0157 -2.40*** 0.0083 -1.53 0.0638 

(-3,+3) -0.81% 0.0237 -0.34 0.3661 -0.85 0.8023 -1.18 0.1200 -1.58* 0.0572 -1.08 0.1414 

(-3,0) -0.10% 0.0172 -0.06 0.4769 -0.36 0.6405 -0.53 0.2980 -1.58* 0.0572 -0.48 0.3177 

(-2,0) -1.06% 0.0154 -0.69 0.2450 -1.08 0.8599 -1.55* 0.0605 -1.58* 0.0572 -1.48* 0.0703 

(-1,0) -1.15% 0.0126 -0.92 0.1798 -1.01 0.8438 -2.25** 0.0121 -0.76* 0.2230 -0.82 0.2064 

(0,+1) -0.73% 0.0127 -0.58 0.2821 -0.61 0.7291 -1.87** 0.0310 -0.76 0.2230 -0.80 0.2125 

(0,+2) -0.70% 0.0153 -0.46 0.3239 -0.60 0.7257 -1.46* 0.0724 -0.76 0.2230 -0.65 0.2573 

(0,+3) -0.92% 0.0178 -0.52 0.3025 -0.91 0.8186 -1.83** 0.0340 -1.58* 0.0572 -1.09 0.1395 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels 
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Table 19. Difference between CAARt2-t1’s for settlements with and without an indication of payment settled by infrequent settlers and 

test statistics/p-values to test H0: CAARt2-t1, Payments/Infrequent – CAARt2-t1, No Payments /Infrequent = 0 

 

df = 25                 

Event 

Window 

CAARt2 - t1, No 

Payments/Infrequent 

CAARt2 - t1, 

Payments/Infrequent 

Difference 

in CAARs 

Var(CAARt2-t1, 

Payments/ Infrequent) 

Var(CAARt2-t1,  

No Payments/ Infrequent) 

SE (CAARt2-t1, 

No Payments/Infrequent 

- CAARt2-t1, No 

Payments/ Frequent) t-statistic2 p-value 

Market Model               

(0,0) 1.35% -0.13% 1.48% 0.0011 0.0005 0.0117 1.27 0.1079 

(-1,+1) 0.10% -1.63% 1.73% 0.0035 0.0014 0.0201 0.86 0.1990 

(-2,+2) -1.23% -1.35% 0.12% 0.0056 0.0024 0.0256 0.05 0.4803 

(-3,+3) -1.08% -0.32% -0.76% 0.0079 0.0033 0.0305 -0.25 0.5977 

(-3,0) -0.95% -0.01% -0.94% 0.0045 0.0024 0.0248 -0.38 0.6464 

(-2,0) -0.67% -1.07% 0.40% 0.0034 0.0014 0.0200 0.20 0.4215 

(-1,0) -0.14% -1.27% 1.13% 0.0023 0.0009 0.0164 0.69 0.2483 

(0,+1) 1.59% -0.49% 2.08% 0.0023 0.0010 0.0163 1.27 0.1079 

(0,+2) 0.79% -0.41% 1.20% 0.0034 0.0014 0.0200 0.60 0.2770 

(0,+3) 1.23% -0.44% 1.67% 0.0045 0.0019 0.0231 0.72 0.2391 

Fama-French Model               

(0,0) 1.25% -0.22% 1.47% 0.0011 0.0005 0.0115 1.28 0.1061 

(-1,+1) -0.01% -1.66% 1.65% 0.0021 0.0014 0.0184 0.90 0.1884 

(-2,+2) -1.39% -1.55% 0.16% 0.0054 0.0024 0.0256 0.06 0.4736 

(-3,+3) -1.16% -0.81% -0.35% 0.0076 0.0034 0.0304 -0.12 0.5473 

(-3,0) -1.09% -0.10% -0.99% 0.0044 0.0018 0.0225 -0.44 0.6681 

(-2,0) -0.82% -1.06% 0.24% 0.0033 0.0014 0.0198 0.12 0.4527 

(-1,0) -0.21% -1.15% 0.94% 0.0022 0.0009 0.0162 0.58 0.2836 

(0,+1) 1.45% -0.73% 2.18% 0.0022 0.0010 0.0162 1.34* 0.0961 

(0,+2) 0.68% -0.70% 1.38% 0.0033 0.0014 0.0197 0.70 0.2452 

(0,+3) 1.18% -0.92% 2.10% 0.0044 0.0019 0.0229 0.92 0.1832 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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Table 20. Difference between CAARt2-t1’s for settlements settled by infrequent settlers and test statistics/p-values to test H0: CAARt2-t1, 

Frequent – CAARt2-t1, Infrequent = 0 

 

df=79                 

Event 

Window 

CAARt2 - t1, 

Frequent 

CAARt2-t1, 

Infrequent 

Difference 

in CAARs 

Var(CAARt2-t1, 

Frequent) 

Var(CAARt2-t1, 

Infrequent) 

SE (CAARt2-t1, Frequent 

- CAARt2-t1, Infrequent) t-statistic2 p-value 

Market Model               

(0,0) 0.28% 1.02% -0.74% 0.00025 0.00098 0.00640 -1.16 0.8752 

(-1,+1) 1.53% -0.29% 1.82% 0.00077 0.00300 0.01120 1.62* 0.0546 

(-2,+2) 1.91% -1.26% 3.17% 0.00129 0.00492 0.01436 2.21** 0.0150 

(-3,+3) 2.15% -0.91% 3.06% 0.00180 0.00693 0.01703 1.80** 0.0378 

(-3,0) 1.55% -0.74% 2.29% 0.00102 0.00392 0.01281 1.79** 0.0386 

(-2,0) 1.23% -0.76% 1.99% 0.00077 0.00298 0.01116 1.78** 0.0395 

(-1,0) 0.95% -0.39% 1.34% 0.00051 0.00197 0.00907 1.48* 0.0714 

(0,+1) 0.85% 1.13% -0.28% 0.00051 0.00199 0.00911 -0.31 0.6213 

(0,+2) 0.96% 0.52% 0.44% 0.00077 0.00296 0.01112 0.40 0.3451 

(0,+3) 0.88% 0.86% 0.02% 0.00102 0.00397 0.01289 0.02 0.4920 

Fama-French Model               

(0,0) 0.33% 0.93% -0.60% 0.00024 0.00098 0.00639 -0.94 0.8250 

(-1,+1) 1.58% -0.38% 1.96% 0.00072 0.00294 0.01106 1.77** 0.0403 

(-2,+2) 2.02% -1.43% 3.45% 0.00120 0.00488 0.01424 2.42*** 0.0089 

(-3,+3) 2.13% -1.08% 3.21% 0.00167 0.00675 0.01676 1.91** 0.0299 

(-3,0) 1.58% -0.87% 2.45% 0.00096 0.00389 0.01272 1.93** 0.0286 

(-2,0) 1.29% -0.88% 2.17% 0.00072 0.00294 0.01106 1.96** 0.0268 

(-1,0) 1.01% -0.42% 1.43% 0.00047 0.00195 0.00900 1.59* 0.0579 

(0,+1) 0.89% 0.97% -0.08% 0.00048 0.00196 0.00902 -0.09 0.5357 

(0,+2) 1.05% 0.37% 0.68% 0.00071 0.00285 0.01090 0.62 0.2685 

(0,+3) 0.88% 0.71% 0.17% 0.00095 0.00386 0.01267 0.13 0.4484 

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels
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Appendix C. Notations 

 

 (t1, t2): an event window that beings on date t1 and ends on date t2 

 𝒕 = 𝟎: the date of the settlement announcement 

 (tE1, tE2): the estimation window that begins on date tE1 and ends on date tE2. In this 

paper, I use the estimation window (-150, -30) 

 𝑵: the number of firms in a given sample 

 𝒊: a specific firm in a given sample 

 𝑨𝑹𝒊𝒕: the abnormal return of security i on date t, which is the difference between security 

i’s return on date t, Rit, and security i’s expected return on date t, E(Rit) 

 CARi,t2-t1: the cumulative abnormal return of security i across the event window (t1,t2) 

 CAARt2-t1: the cumulative average abnormal return of all securities in a sample of N 

securities across the event window (t1,t2) 
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