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A tale of three auctions

Ascending auction

Art, fish, livestock, timber, oil rights, used cars, real estate. . .

First-price auction

Procurement, government bonds, timber, oil rights, real estate. . .

Second-price auction

Government bonds, collectible stamps, Internet advertising. . .

Why do these three formats persist?

Why do all three formats persist?
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Full commitment

Incentive compatibility for the bidders, not for the auctioneer.
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Mechanism Design: The Standard Approach

Full commitment

Incentive compatibility for the bidders, not for the auctioneer.

[The auctioneer] binds himself in such a way that all
the bidders know that he cannot change his procedures
after observing the bids, even though it might be in his
interest ex post to renege. In other words, the organizer of
the auction moves as the Stackelberg leader or first mover.

McAfee & McMillan 1987
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Bending the rules

In a second-price auction:

1. Receive sealed bids b1 > b2.

2. Pretend (to bidder 1) that b̂2 = b1 − ε.
3. Neither bidder notices.

4. Strict profit.

Auctioneer would want to deviate. (Vickrey 1961)

In a first-price auction:

1. Receive bids b1 > b2.

2. Invert bid function b−11 (b1) = v1.

3. Make TIOLI offer (to bidder 1) of v1 − ε.
4. Bidder 1 brings a lawsuit and wins.
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Second-price auctions by mail

After some time in the business, I ran an auction with
some high mail bids from an elderly gentleman who’d
been a good customer of ours and obviously trusted us.

My wife Melissa, who ran the business with me, stormed
into my office the day after the sale, upset that I’d used
his full bid on every lot, even when it was considerably
higher than the second-highest bid.

Jeff Purser, stamp auctioneer, Connecticut
reported by Lucking-Reiley 2000
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Second-Price Auctions for Online Ads

In a second-price auction, raising the price floors after
the bids come in allows [online auctioneers] to make
extra cash off unsuspecting buyers [. . . ]

This practice
persists because neither the publisher nor the ad buyer
has complete access to all the data involved in the
transaction, so unless they get together and compare
their data, publishers and buyers won’t know for sure
who their vendor is ripping off.

Ross Benes, reporting for Digiday, Sep 13 2017
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“Chandelier Bidding”

Under New York City regulations auctioneers can
fabricate bids up to an item’s reserve price. Because a
reserve price is secret and not listed in the catalog,
bidders have no way of knowing which offers are real.

NYT, April 24, 2000
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Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Auctions by telephone

Suppose all the serious bidders are phone bidders.
In which formats does the auctioneer want to follow the rules?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Auctions by telephone

Suppose all the serious bidders are phone bidders.
In which formats does the auctioneer want to follow the rules?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Warning: Substantive Assumptions

Auctioneer is the nexus of
communication

Private ‘telephone calls’ to bidders.
Can misrepresent to i what j has done.

No watches or stopwatches.

Bidders do not know how many calls
the auctioneer made to other bidders.

Informal definition

Auctioneer may deviate in ways that no
single bidder can detect.
credible ≡ incentive-compatible for
auctioneer to follow the rules.
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A Mechanism Design Framework

(auctions will be a special case)

1. A set of agents N

2. Finite type spaces (Θi )i∈N

3. Joint distribution D : ΘN → (0, 1] (full support)

4. Outcomes X

5. Utility ui : X ×Θi → R

6. Auctioneer utility u0 : X ×ΘN → R
• e.g. auction revenue, social surplus.

7. For each agent, a partition Xi of X .
• e.g. I directly observe my payment, but not your payment.
• Not a design choice.
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Implementation via extensive forms

G denotes an extensive game form with consequences in X .

1. Finitely many histories.

2. No chance moves.

3. Perfect recall.

Si : infosets×Θi → actions

Protocol (G ,SN) is Bayesian Incentive Compatible (BIC) if

∀i : Si ∈ argmax
S ′
i

EθN [uGi (S ′i , S−i , θN)]︸ ︷︷ ︸
expected utility

4. For every history h, there exists θN such that h is on the
path-of-play.

5. Every infoset has at least two actions.

6. If i is called to play at h, then i can affect the outcome.
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Hurwicz (1972) defines incentive compatibility for agents:

In effect, our concept of incentive compatibility
merely requires that no one should find it profitable to
“cheat,”

where cheating is defined as behavior that can
be made to look “legal” by a misrepresentation of a
participant’s preferences or endowment, with the proviso
that the fictitious preferences should be within certain
“plausible” limits.

≡ Θi

How can we extend this idea to include auctioneer deviations?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Hurwicz (1972) defines incentive compatibility for agents:

In effect, our concept of incentive compatibility
merely requires that no one should find it profitable to
“cheat,” where cheating is defined as behavior that can
be made to look “legal” by a misrepresentation of a
participant’s preferences or endowment, with the proviso
that the fictitious preferences should be within certain
“plausible” limits.

≡ Θi

How can we extend this idea to include auctioneer deviations?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Hurwicz (1972) defines incentive compatibility for agents:

In effect, our concept of incentive compatibility
merely requires that no one should find it profitable to
“cheat,” where cheating is defined as behavior that can
be made to look “legal” by a misrepresentation of a
participant’s preferences or endowment, with the proviso
that the fictitious preferences should be within certain
“plausible” limits. ≡ Θi

How can we extend this idea to include auctioneer deviations?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Hurwicz (1972) defines incentive compatibility for agents:

In effect, our concept of incentive compatibility
merely requires that no one should find it profitable to
“cheat,” where cheating is defined as behavior that can
be made to look “legal” by a misrepresentation of a
participant’s preferences or endowment, with the proviso
that the fictitious preferences should be within certain
“plausible” limits. ≡ Θi

How can we extend this idea to include auctioneer deviations?



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A Messaging Game

1. Auctioneer can:

1.1 Either: Choose an outcome and end the game.
1.2 Or: Go to Step 2.

2. Auctioneer chooses some i ∈ N, sends message m, set of
acceptable replies R.

3. i privately observes (m,R), chooses r ∈ R.

4. Auctioneer privately observes r . Go to Step 1.



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A Messaging Game

1. Auctioneer can:

1.1 Either: Choose an outcome and end the game.
1.2 Or: Go to Step 2.

2. Auctioneer chooses some i ∈ N, sends message m, set of
acceptable replies R.

3. i privately observes (m,R), chooses r ∈ R.

4. Auctioneer privately observes r . Go to Step 1.

An isomorphism

For any G , can define S0 that is ‘equivalent’ for the agents.
For any S0, can define G that is ‘equivalent’ for the agents.
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How the auctioneer can deviate

Consider protocol (G , SN), and SG
0 that ‘runs’ G .

oi observation for i =
communication sequence (mt

i ,R
t
i , r

t
i )Tt=1

& cell of outcome partition Xi

Si : messages︸ ︷︷ ︸
infosets

×Θi → replies︸ ︷︷ ︸
actions

resulting observation denoted oi (S0, SN , θN)

oi (S0,SN , θN) has an innocent explanation if:

∃θ′−i : oi (S
G
0 , SN , (θi , θ

′
−i )) = oi (S0, SN , θN)

S0 is safe if ∀i : ∀θN : oi (S0, SN , θN) has an innocent explanation.
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Defining “Credible”

Definition

(G ,SN) is credible if:

SG
0 ∈ argmax

S0∈safe(SG
0 ,SN)

EθN [u0(S0, SN , θN)]︸ ︷︷ ︸
auctioneer’s expected utility

Implies best-responding also to updated beliefs.

(G ,SN) is BIC and credible. ↔
(SG

0 , SN) is a Bayes-Nash
equilibrium of the
messaging game restricted
to safe(SG

0 ,SN).
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As above, but restricted to direct mechanisms
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This talk: Extensive forms.

Commit to today’s auction, not tomorrow’s auction
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This talk: Not a repeated game.

Auctions as bargaining games

McAdams & Schwarz 2007, Vartiainen 2013, Lobel & Paes Leme 2017

This talk: No ‘red-handed’ rule-breaking.
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Credible Optimal Auctions

Following Myerson (1981)

1. One object.

2. N bidders.

3. Only winning bidders make transfers

4. Outcome (y , t) ∈ X , y ∈ N ∪ {0}, t ∈ R.

5. Private values ui (y , t, θi ) = 1i=y [θi − t]

6. Auctioneer wants revenue u0(y , t) = 1i∈Nt

7. i observes whether he gets the object, and how much he pays.

Objective

Choose (G ,SN) to maximize revenue subject to BIC and interim
participation constraints.
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A modeling choice.

Myerson 1981: Θi is uncountably infinite.

Extensive forms and infinity lead to known paradoxes.

• Continuous time (Simon and Stinchcombe 1989)

• Infinite actions (Myerson & Reny 2016)

Decision: To use extensive forms, discretize Myerson 1981.
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Distributions

i.i.d. probability mass function p : Θi → (0, 1]

pseudo-pdf f (θk) ≡ p(θk)

ε

cdf F (θk) ≡
k∑

j=1

p(θj)

virtual value η(θi ) ≡ θi −
1− F (θi )

f (θi )
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A refresher on virtual values

virtual value η(θi ) ≡ θi − 1−F (θi )
f (θi )

Proposition (continuous case, Myerson 1981)

If (G ,SN) is BIC and bidders with type θ0 have zero surplus, then

E(revenue) = E(winner’s virtual value)

Proposition (discrete case)

If (G ,SN) is BIC and bidders with type θ0 have zero surplus, then

|E(revenue)− E(winner’s virtual value)| ≤ ε

Assumption. F is regular, i.e. η(·) is strictly increasing.
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Definition

(G ,SN) is orderly if, for some reserve ρ ≤ θK , and some strict
order B on N, bidder i wins the object iff:

1. θi ≥ ρ, and

2. For all j 6= i , θi is more than θj , breaking ties with B.

Definition

(G ,SN) is static if every agent has exactly one infoset and is
always called to play.

Why study static mechanisms?

Conceptual: ‘Direct’ mechanisms. Information flows one way.

Logistical: Asynchronous sealed bids. Eases participation.
(Athey, Levin, & Seira 2011)

Physical: c ≈ 3× 108 meters/second
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A first guess

Conjecture

Assume (G , SN) is optimal and orderly. (G ,SN) is credible and
static if and only if (G , SN) is a first-price auction.

Warning: Existence issues.

Revenue equivalence breaks slightly with discrete types.

Sometimes orderly ∩ optimal ∩ first-price = ∅
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credible, static ↔ quasi-first-price

Definition

(G ,SN) is a quasi-first-price auction if it is static, and each i
either chooses a bid in some feasible set Bi ⊂ R or declines.

1. Some agent wins the object iff some agent places a bid.

2. If i wins the object, then i pays his bid, and:

2.1 Either: i has the highest bid, which is ≥ 0.

2.2 Or: i has the highest tie-breaking priority and has almost the
highest bid. (bids at least as much as any j does when
θj = θK − ε.)
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We represent a reserve price by restricting Bi .
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either chooses a bid in some feasible set Bi ⊂ R or declines.
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2. If i wins the object, then i pays his bid, and:

2.1 Either: i has the highest bid, which is ≥ 0.
2.2 Or: i has the highest tie-breaking priority and has almost the

highest bid. (bids at least as much as any j does when
θj = θK − ε.)

Intuition: A very expensive ‘buy it now’ button.

Anomaly vanishes as ε→ 0.
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credible, static ↔ quasi-first-price

Definition

(G ,SN) is a quasi-first-price auction if it is static, and each i
either chooses a bid in some feasible set Bi ⊂ R or declines.

1. Some agent wins the object iff some agent places a bid.

2. If i wins the object, then i pays his bid, and:

2.1 Either: i has the highest bid, which is ≥ 0.
2.2 Or: i has the highest tie-breaking priority and has almost the

highest bid. (bids at least as much as any j does when
θj = θK − ε.)

Theorem 1

Assume (G , SN) is ε-optimal and orderly. (G ,SN) is credible and
static if and only if (G , SN) is a quasi-first-price auction.
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Proof Sketch

quasi-first-price auction → credible and static

By inspection.

credible and static → quasi-first-price auction

Suppose after i plays a, there are two prices that i might pay.
Safely deviate to charge the higher price.

Highest bid must win.
Otherwise deviate to sell to highest bid.
Winning bid must be ≥ 0. Otherwise deviate to sell to no one.

(Plus some extra steps for the corner case.)
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Dominant-strategy or credible?

“In the next five years, the vast majority of auctions will move to
transparent first price,” said Criteo’s EVP of global supply, Marc
Grabowski.

Switching auction dynamics will unleash dramatic changes in the
$32.5 billion programmatic market. . .
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Dominant-strategy or credible?

Buyers, publishers, and ad tech companies who advocate a switch to
first-price auctions say it’s because fair second-price auctions don’t
exist any more. [Online auctioneers] have polluted them with hidden
fees and manipulative auction dynamics.
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The story so far

regular i.i.d. values, ‘in the limit’
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Strategy-proof

Definition

(G ,SN) is strategy-proof if ∀i : ∀S ′N\i : Si best responds to S ′N\i .

Goal: Characterize the set of optimal extensive game forms
credible ∩ strategy-proof.

No revelation principle.

1. Auctioneer could make any queries in any order.

2. Agents may receive information when called to play.



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Strategy-proof

Definition

(G ,SN) is strategy-proof if ∀i : ∀S ′N\i : Si best responds to S ′N\i .

Goal: Characterize the set of optimal extensive game forms
credible ∩ strategy-proof.

No revelation principle.

1. Auctioneer could make any queries in any order.

2. Agents may receive information when called to play.



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Strategy-proof

Definition

(G ,SN) is strategy-proof if ∀i : ∀S ′N\i : Si best responds to S ′N\i .

Goal: Characterize the set of optimal extensive game forms
credible ∩ strategy-proof.

No revelation principle.

1. Auctioneer could make any queries in any order.

2. Agents may receive information when called to play.



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

A credible strategy-proof auction

Θh
i ≡ {θi | i ’s play up to history h was consistent with Si (·, θi )}



Motivation Summary Framework Optimal Auctions Theorem 1 Theorem 2 Conclusion

Feasible bids = Θi

The high bidder has placed the highest bid so far that is (weakly)
above the reserve. (break ties with B)

Definition

(G ,SN) is an ascending auction if:

1. At each history, some active bidder chooses to:

1.1 EITHER raise his bid to b, where b is no more than is
necessary to become the high bidder.

1.2 OR quit.

2. If only the high bidder remains, he wins and pays his bid.

3. (reserve) If no bidder remains, then no bidder wins.

4. Si specifies:

4.1 If (conditional on current infoset) you could win at a price
≤ θi , keep bidding.

4.2 If the required bid is > θi , quit.
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credible, strategy-proof ↔ ascending

Theorem 2

Assume (G , SN) is optimal and orderly. (G ,SN) is credible and
strategy-proof if and only if (G ,SN) is an ascending auction.

Green-Laffont-Holmström, Theorem 1, and Theorem 2 →
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Q: Why not raise 1’s price to b1 + ε, even after bidder 2 has quit?
A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b1.

−εf (b1)b1︸ ︷︷ ︸
expected loss from 1 quitting

+ (1− F (b1))ε︸ ︷︷ ︸
expected gain from raising price

divide through by εf (b1)

− [b1 −
1− F (b1)

f (b1)
]︸ ︷︷ ︸

virtual value

< 0

Ceci n’est pas une proof.
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Proof: ascending → credible

π(G ,SN)

= π(SG
0 ,SN) < π(S ′0,SN) = π(G ′,SN)

1. Ascending (G ,SN) is optimal.

2. Consider SG
0 that runs G .

3. Suppose S ′0 is a profitable safe deviation.

4. For all i , Si remains a best response to (S ′0, SN\i ).

5. (G ′, SN) is also BIC, yields more revenue than (G ,SN).
Contradiction, QED.
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All the types who might still win pool on the same action.
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A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder
1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
• If not, sell to bidder 2.

2. Check if 2’s type is low enough to be worth exaggerating.
• If not, sell the object ‘by the book’.

3. Exaggerate 2’s type, sell to bidder 1.

4. Don’t get caught.

strategy-proof, not pooling → profitable safe deviation

credible, strategy-proof → pooling → ascending auction
bonus
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Aqueducts, books, concrete, civil law. . . and the ascending auction.

Perspective #1

First-price and ascending
auctions are used because of
tradition/path-dependence.

Perspective #2

First-price and ascending
auctions are good solutions to a
well-defined commitment
problem.
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An Auction Trilemma

Pick any two of three.
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Appendix

What about asymmetric distributions?

First-price auction (static, credible)

‘Robustly’ credible. May not be optimal.
Sometimes impossible to restore optimality.

Proposition

There exist asymmetric distributions such that no credible static
(G ,SN) is ε-optimal.

Ascending auction (strategy-proof, credible)

May not be credible or optimal.
Easy to restore both.
The virtual values ascending auction.

return
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Appendix

Bidders seldom display types on placards.

In the English system bids are . . . usually transmitted
by signal. Such signals may be in the form of a wink, a
nod, scratching an ear, lifting a pencil, tugging at the
coat of the auctioneer or even staring into the
auctioneer’s eyes – all of them perfectly legal.

Cassady 1967

Public communication affects aftermarkets and thus incentives.
Ausubel & Cramton 2004, Carroll & Segal 2016, Dworczak 2017.
(Outside the model today.)
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A Menagerie

Table: ε-optimal auctions

1P 2P Asc

Dutch All-Pay Consol

Strategy-proof X X
Static X X

X X

Credible X X

X X X

Ex Post IR X X X

X X

Non-winner 0 transfer X X X
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Appendix

optimal ∩ first-price = ∅

N = {1, 2}
Θi = {4, 5, 6}
Tie-breaking order: 1C 2

Optimal reserve = 4.

Optimality requires:
b1(5) = 5
b2(5) = 4.5

When type profile is (5, 5), tie-breaking rule requires to sell to
bidder 2, even though he bid less. Not first-price auction!

return
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