Advancements in Gravity Models of Spatial Economics

Costas Arkolakis1

1Yale University and NBER

Frontiers in Urban Economics, Columbia
November 6, 2015
A Unified Framework for Spatial Economics

- Many sciences, as well as disciplines in economics, based on unified setup

- Urban: Rosen-Roback spatial equilibrium model (Glaeser Gottlieb '09)

- This model lacks spatial linkages/frictions

- Recently, trade/geography economists motivated by modeling & data breakthroughs developed an alternative: so-called the 'gravity framework'

- I argue that this new setup has large advantages

- Offers comprehensive analytical framework for spatial economics...
A Unified Framework for Spatial Economics

- Many sciences, as well as disciplines in economics, based on unified setup
 - E.g. standard model in physics, growth model in macro etc.
A Unified Framework for Spatial Economics

- Many sciences, as well as disciplines in economics, based on unified setup
 - E.g. standard model in physics, growth model in macro etc.

- Urban: Rosen-Roback spatial equilibrium model (Glaeser Gottlieb ’09)
A Unified Framework for Spatial Economics

- Many sciences, as well as disciplines in economics, based on unified setup
 - E.g. standard model in physics, growth model in macro etc.

- Urban: Rosen-Roback spatial equilibrium model (Glaeser Gottlieb ’09)
 - This model lacks spatial linkages/frictions
A Unified Framework for Spatial Economics

- Many sciences, as well as disciplines in economics, based on unified setup
 - E.g. standard model in physics, growth model in macro etc.

- Urban: Rosen-Roback spatial equilibrium model (Glaeser Gottlieb ’09)
 - This model lacks spatial linkages/frictions
 - Recently, trade/geography economists motivated by modeling & data breakthroughs developed an alternative: so-called the ‘gravity framework’
 - I argue that this new setup has large advantages
 - Offers comprehensive analytical framework for spatial economics...
 - ...integrated framework for fields of trade, geography, and urban
A Unified Framework for Spatial Econ: What do we Need?

- This framework ought to satisfy the following properties
 1. Analytically tractable but rich
 - Micro-foundations
 - Analytical expressions from consumer/firm choice and nice aggregation
 - Flexible enough to model complicated spatial linkages
 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & link to micro data
 - Offer an easy setup to estimate key parameters
 3. Have desirable theoretical properties
 - Positive (existence, uniqueness, comparative statics)
 - Normative (link welfare and openness)
 - Easy to work with/compute
A Unified Framework for Spatial Econ: What do we Need?

- This framework ought to satisfy the following properties

 1. Analytically tractable but rich
 - Micro-foundations
 - Analytical expressions from consumer/firm choice and nice aggregation
 - Flexible enough to model complicated spatial linkages

 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & link to micro data
 - Offer an easy setup to estimate key parameters
A Unified Framework for Spatial Econ: What do we Need?

- This framework ought to satisfy the following properties
 1. Analytically tractable but rich
 - Micro-foundations
 - Analytical expressions from consumer/firm choice and nice aggregation
 - Flexible enough to model complicated spatial linkages
 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & link to micro data
 - Offer an easy setup to estimate key parameters
 3. Have desirable theoretical properties
 - Positive (existence, uniqueness, comparative statics)
 - Normative (link welfare and openness)
 - Easy to work with/compute
A Unified Framework for Spatial Econ: The Gravity Model

- General Equilibrium gravity model easily passes first two tests
 1. Analytically tractable but rich
 - Micro-foundations: Anderson, DFS/Eaton Kortum (EK), Melitz/Chaney
 - Analytical expressions and nice aggregation: Standard GE framework
 - Flexible enough to model complicated spatial linkages: EK, Allen Arkolakis
 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & micro data: Dekle EK, EK Kramarz
 - Offers easy setup to estimate key parameters: EK
A Unified Framework for Spatial Econ: The Gravity Model

- General Equilibrium gravity model easily passes first two tests
 1. Analytically tractable but rich
 - Micro-foundations: Anderson, DFS/Eaton Kortum (EK), Melitz/Chaney
 - Analytical expressions and nice aggregation: Standard GE framework
 - Flexible enough to model complicated spatial linkages: EK, Allen Arkolakis
 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & micro data: Dekle EK, EK Kramarz
 - Offers easy setup to estimate key parameters: EK
 3. Have desirable theoretical properties:
 - In the past, this has proven an enormous challenge
 - The gravity framework is a daunting black box
A Unified Framework for Spatial Econ: The Gravity Model

- General Equilibrium gravity model easily passes first two tests
 1. Analytically tractable but rich
 - Micro-foundations: Anderson, DFS/Eaton Kortum (EK), Melitz/Chaney
 - Analytical expressions and nice aggregation: Standard GE framework
 - Flexible enough to model complicated spatial linkages: EK, Allen Arkolakis
 2. Have a clear mapping to the data
 - Model variables correspond to national statistics & micro data: Dekle EK, EK Kramarz
 - Offers easy setup to estimate key parameters: EK
 3. Have desirable theoretical properties:
 - In the past, this has proven an enormous challenge
 - The gravity framework is a daunting black box
 - Its empirical success notwithstanding, until recently, little could be said about its properties
What About the Theoretical Properties of the Model?

- The GE gravity model is a hard model to solve!

- In the best case scenario, N country equations/unknowns + GE interactions
- Makes for a problem with a very formidable solution
- Problem in economic geography (i.e. when labor is mobile) urban (e.g. knowledge spillovers) can be a true nightmare: agglomeration externalities
- Work in the past 5 years offered sharp characterization of gravity model:
 - Extremely versatile setup. Works well for trade, geography, urban econ
- A volley of mathematical tools can be used to characterize its theoretical properties, e.g. non-linear equations theory, integral equations etc.
- Discussion based on a rapidly expanding literature:
 - Will be discussed using results/model in Allen Arkolakis (AA) '14, AA Takahashi '14 (AAT), AA and Li '14 (AAL14), AA and Li '15 (AAL15) and some earlier results by Arkolakis Costinot Rodriguez-Clare (ACR) '12
What About the Theoretical Properties of the Model?

- The GE gravity model is a hard model to solve!
 - In the best case scenario, N country equations/unknowns + GE interactions

- A volley of mathematical tools can be used to characterize its theoretical properties, e.g. non-linear equations theory, integral equations etc.

- Discussion based on a rapidly expanding literature:
 - Will be discussed using results/model in Allen Arkolakis (AA) '14, AA Takahashi '14 (AAT), AA and Li '14 (AAL14), AA and Li '15 (AAL15) and some earlier results by Arkolakis Costinot Rodriguez-Clare (ACR) '12
What About the Theoretical Properties of the Model?

- The GE gravity model is a hard model to solve!
 - In the best case scenario, N country equations/unknowns + GE interactions
 - Makes for a problem with a very formidable solution
 - Problem in economic geography (i.e. when labor is mobile) urban (e.g. knowledge spillovers) can be a true nightmare: agglomeration externalities
What About the Theoretical Properties of the Model?

- The GE gravity model is a hard model to solve!
 - In the best case scenario, N country equations/unknowns + GE interactions
 - Makes for a problem with a very formidable solution
 - Problem in economic geography (i.e. when labor is mobile) urban (e.g. knowledge spillovers) can be a true nightmare: agglomeration externalities

- Work in the past 5 years offered sharp characterization of gravity model:
 - Extremely versatile setup. Works well for trade, geography, urban econ
 - A volley of mathematical tools can be used to characterize its theoretical properties, e.g. non-linear equations theory, integral equations etc.
 - Discussion based on a rapidly expanding literature:
 - Will be discussed using results/model in Allen Arkolakis (AA) ’14, AA Takahashi ’14 (AAT), AA and Li ’14 (AAL14), AA and Li ’15 (AAL15) and some earlier results by Arkolakis Costinot Rodriguez-Clare (ACR) ’12
Roadmap

- Analytical Gravity and Mapping to the Data
- Gravity, Modules, and Models
- Characterization of Urban Equilibrium
- Applications
Roadmap

- Analytical Gravity and Mapping to the Data
- Gravity, Modules, and Models
- Characterization of Urban Equilibrium
- Applications
Trade and Commuting Gravity: Setup

- Gravity trade model (Anderson ’79):
 - perfect competition, each location produces a differentiated variety
 - CES preferences with elasticity σ across varieties.

- Bilateral trade given by

$$X_{ij} = \frac{\left(\frac{w_i}{A_i} \tau_{ij}\right)^{1-\sigma}}{\sum_k \left(\frac{w_k}{A_k} \tau_{kj}\right)^{1-\sigma} E_j}$$

 - A_i is productivity, τ_{ij} is iceberg cost, w_i, is wage rate, E_j, country spending
 - We call $\epsilon \equiv 1 - \sigma$ the ‘trade elasticity’
Trade Gravity: Analytics and Micro-foundations

- Bilateral trade given by (E_j is country spending)

\[X_{ij} = \left(\tau_{ij} \right)^{1-\sigma} \times \left(\frac{w_i}{A_i} \right)^{1-\sigma} \times \frac{1}{\sum_k \left(\frac{w_k}{A_k} \tau_{kj} \right)^{1-\sigma} E_j} \]
Trade Gravity: Analytics and Micro-foundations

- Bilateral trade given by (E_j is country spending)

$$X_{ij} = \left(\frac{\tau_{ij}^e}{\tau_{ij}} \right)^{1-\sigma} \times \left(\frac{w_i}{A_i} \right)^{1-\sigma} \times \frac{1}{\sum_k \left(\frac{w_k}{A_k} \tau_{kj} \right)^{1-\sigma} E_j}$$

- Other microfoundations

 - EK offered microfoundations for DFS: Frechet distributed productivities
 - Bergstrand '85 in partial equilibrium, Arkolakis Klenow Demidova Rodriguez-Clare '08 in GE, gravity for Krugman '80
 - Chaney '08 for monopolistic competition with heter. firms (Melitz '03)
 - Bernard, Eaton, Jensen and Kortum '03 gravity with Bertrand competition
Use formulation of AAL15 (L_i: workers, μ_{ij}: commuting cost, u_i: amenities)

- Step 1: Choose work location $\arg\max W_j$. Spatial equilibrium: $W_j = W$.
- Step 2: Choose living location after observing Frechet preference shock as in Ahlfedlt et al: $F(v) = e^{-v^{-\theta}}$.

In expectation welfare of working in j is $W_j \equiv E\left[\max_i (u_i w_j P_i \mu_{ij} \nu_i(\omega))\right] = w_j \left(\sum_i (u_i P_i \mu_{ij})\right)^{\frac{1}{\theta}}$.

From step 1 we get bilateral commuting flows $L_{ij} = (u_i P_i \mu_{ij}) \theta \sum_k (u_k P_k \mu_{kj}) \theta L_j = W_j - \theta (\mu_{ij}) - \theta (u_i P_i) \theta w_j L_j$.

Urban Gravity: Analytics and Micro-foundations
Urban Gravity: Analytics and Micro-foundations

▶ Use formulation of AAL15 (L_i:workers, μ_{ij}:commuting cost, u_i:amenities)

▶ Step 1: Choose work location arg max W_j. Spatial equilibrium: $W_j = W$.

▶ Step 2: Choose living location after observing Frechet preference shock as in Ahlfedlt et al: $F(v) = e^{-\nu^{-\theta}}$.

▶ In expectation welfare of working in j is

$$W_j \equiv E \left[\max_i \left(u_i \frac{w_j}{P_i \mu_{ij}} \nu_i(\omega) \right) \right] = w_j \left(\sum_i \left(\frac{u_i}{P_i \mu_{ij}} \right)^\theta \right)^{\frac{1}{\theta}}.$$

▶ From step 1 we get bilateral commuting flows

$$L_{ij} = \frac{\left(\frac{u_i}{P_i \mu_{ij}} \right)^\theta}{\sum_k \left(\frac{u_k}{P_k \mu_{kj}} \right)^\theta} L_j = W^{-\theta} (\mu_{ij})^{-\theta} \left(\frac{u_i}{P_i} \right)^\theta w_j^\theta L_j.$$
Gravity Model and the Aggregate Data

- The quintessential example of an applied framework
 - Empirical counterpart for aggregate variables (GDP trade prices tariffs)

- The Idea (focus on trade): We can write bilateral trade flows, X_{ij}, as

$$X_{ij} = \gamma_i \delta_j \tau_{ij}^\epsilon \implies \ln X_{ij} = \epsilon \ln \tau_{ij} + \ln \gamma_i + \ln \delta_j$$

- Early formulation: reduced form gravity relationship e.g. Tinberger '62
- Can formulate fixed effects specification (EK/Redding Venables)
Gravity Model and the Aggregate Data

- The quintessential example of an applied framework
 - Empirical counterpart for aggregate variables (GDP, trade prices, tariffs)

- The Idea (focus on trade): We can write bilateral trade flows, X_{ij}, as

 \[X_{ij} = \gamma_i \delta_j \tau_{ij}^\epsilon \rightarrow \ln X_{ij} = \epsilon \ln \tau_{ij} + \ln \gamma_i + \ln \delta_j \]

 - Early formulation: reduced form gravity relationship e.g. Tinberger '62
 - Can formulate fixed effects specification (EK/Redding Venables)

- Independent of microfoundations, aggregate parameters (e.g. ϵ) estimated with direct measures of trade costs (e.g. tariffs):
 - See Caliendo Parro '15, Arkolakis, Ramondo, Rodriguez-Clare, Yeaple '13
 - Exploit micro structure: EK, Donaldson '14, Simonovska Waugh '14 '15

- Other approaches involving using the GE structure for estimation
 - Anderson van Wincoop '04, Bergstrand, Egger and Larch, AAT
Gravity Model and the Micro Data

- The quintessential example of an applied framework
 - Micro-data can be used without affecting macro structure
 - As in Bernard Eaton Jensen Kortum '03, EK Kramarz '11, Arkolakis '10
Gravity Model and the Micro Data

- The quintessential example of an applied framework
 - Micro-data can be used without affecting macro structure
 - As in Bernard Eaton, Jensen, Kortum '03, EK Kramarz '11, Arkolakis '10

- This model has been recently adapted to
 - economic geography (AA, Redding '15, Ramondo et al, Caliendo et al)
 - urban (Ahlfedlt, Redding, Sturm, Wolf '15, AAL15, Monte et al '15)
Roadmap

- Analytical Gravity and Mapping to the Data
- Gravity, Modules, and Models
- Characterization of Equilibrium
- Applications
General Equilibrium

- We discussed how to create spatial linkages across locations (e.g. cities, countries) using gravity equations
 - Trade or commuting are just two examples

- Next step: close model to compute equilibrium, welfare, comparative statics
 - Goal: formulate a computable system of equations/unknowns
A GE model with trade needs to satisfy two accounting conditions:

- “Goods market clearing”:
 \[Y_i = \sum_{j \in S} X_{ij} \quad \forall i \in S \]

- “Budget Balance”:
 \[E_i = \sum_{j \in S} X_{ji} \quad \forall i \in S \]

Note: it may be that \(E_i \neq Y_i \)
Accounting: Urban Module

- A GE model with urban flows (commuting) needs to satisfy accounting as well
 - Total output in i is equal to total earnings:
 \[Y_i = \sum_j w_i L_{ji} \]
 (1)
 - Total spending in i is equal to what earned everywhere:
 \[E_i = \sum_j w_j L_{ij} \]
 (2)

- We developed essential components for trade, geography, urban models
 - Gravity (trade and commuting)
 - Accounting modules (trade and urban)
- Now we define and analyze the GE of these models
Accounting: Urban Module

- A GE model with urban flows (commuting) needs to satisfy accounting as well
 - Total output in i is equal to total earnings:
 \[Y_i = \sum_j w_i L_{ji} \] \hspace{1cm} (1)
 - Total spending in i is equal to what earned everywhere:
 \[E_i = \sum_j w_j L_{ij} \] \hspace{1cm} (2)

- We developed essential components for trade, geography, urban models
 - Gravity (trade and commuting)
 - Accounting modules (trade and urban)
Accounting: Urban Module

- A GE model with urban flows (commuting) needs to satisfy accounting as well
 - Total output in i is equal to total earnings:
 \[Y_i = \sum_j w_i L_{ji} \] \hspace{1cm} (1)
 - Total spending in i is equal to what earned everywhere:
 \[E_i = \sum_j w_j L_{ij} \] \hspace{1cm} (2)

- We developed essential components for trade, geography, urban models
 - Gravity (trade and commuting)
 - Accounting modules (trade and urban)
 - Now we define and analyze the GE of these models
Closing the Trade Model

- In trade models (with no deficit) we have $E_i = Y_i$
 - Labor is the only factor so $Y_i = w_i L_i$

- Equilibrium is trade gravity + trade module.
 - Solve w_i, P_i using

$$w_i^\sigma = \sum_{j \in S} (\tau_{is})^{1-\sigma} L_i^{-1} A_i^{\sigma-1} \tilde{u}_j^{\sigma-1} L_j w_j P_j^{\sigma-1}$$

$$P_i^{1-\sigma} = \sum_{j \in S} (\tau_{ji})^{1-\sigma} A_j^{\sigma-1} (w_j)^{1-\sigma}$$
Closing the Trade Model

- In trade models (with no deficit) we have $E_i = Y_i$
 - Labor is the only factor so $Y_i = w_i L_i$

- Equilibrium is trade gravity + trade module.
 - Solve w_i, P_i using

$$w_i^\sigma = \sum_{j \in S} (\tau_{is})^{1-\sigma} L_i^{-1} A_i^{\sigma-1} \bar{u}_j^{\sigma-1} L_j w_j P_j^{\sigma-1}$$

$$P_i^{1-\sigma} = \sum_{j \in S} (\tau_{ji})^{1-\sigma} A_j^{\sigma-1} (w_j)^{1-\sigma}$$

- We intentionally avoided substituting the price index.
 - Crucial to write it this way, as it is much easier to characterize
 - AAT show that equilibrium exists and is unique if $\sigma > 1$
 - Restricting $\tau_{kj} = \tau_{jk}$ implies a milder restriction for uniqueness, $\sigma > \frac{1}{2}$
In economic geography, as in AA, we model local spillovers:

- production $A_i = \bar{A}_i L_i^{\alpha}$, amenity $u_i = \bar{u}_i L_i^{\beta}$
In economic geography, as in AA, we model local spillovers:

- production $A_i = \bar{A}_i L_i^{\tilde{\alpha}}$,
- amenity $u_i = \bar{u}_i L_i^{\tilde{\beta}}$

Different $\tilde{\alpha}$, $\tilde{\beta}$ isomorphic to different economic geography models

- E.g. Monopolistic competition with free entry: $\tilde{\alpha} = \frac{1}{\sigma - 1}$.
- Cobb-Douglas preferences over non-tradable sector: $\tilde{\beta} = - \frac{1-\gamma}{\gamma}$.
Geography Model: Equilibrium Equations

- Equilibrium is gravity+trade module+
 - Utility equalization $W_i = W$
 - Aggregate labor clears $\sum_i L_i = \bar{L}$

- Solve w_i, L_i, W using

$$W^{\sigma-1} L_i^{1-\bar{\alpha}(\sigma-1)} w_i^\sigma = \sum_{j=1}^{N} T_{ij}^{1-\sigma} \bar{A}_i^{\sigma-1} \bar{u}_j^{\sigma-1} L_j^{1+\bar{\beta}(\sigma-1)} w_s^\sigma$$

$$W^{\sigma-1} w_i^{1-\sigma} L_i^{\bar{\beta}(1-\sigma)} = \sum_{j=1}^{N} T_{ji}^{1-\sigma} \bar{A}_j^{\sigma-1} \bar{u}_i^{\sigma-1} w_j^{1-\sigma} L_j^{\bar{\alpha}(\sigma-1)}$$

and of course $\sum_i L_i = \bar{L}$.

- Existence and uniqueness in AA and AAT: notice same mathematical structure as in the trade model.
 - Except now welfare is the eigenvalue of the system
Summary of GE Gravity Trade & Geography Models

- GE gravity trade (Anderson '79: solve for w_i, P_i)

$$w_i^\sigma L_i = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_i^{\sigma-1} L_j P_j^{\sigma-1} w_j$$

$$P_i^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_j^{\sigma-1} w_j^{1-\sigma}$$
Summary of GE Gravity Trade & Geography Models

- GE gravity trade (Anderson '79: solve for w_i, P_i)

\[
w_i^\sigma L_i = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_i^{\sigma-1} L_j P_j^{\sigma-1} w_j
\]

\[
P_i^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_j^{\sigma-1} w_j^{1-\sigma}
\]

- GE geography (AA: welfare equalizes, solve for $W = \frac{w_i}{P_i}, w_i, L_i$)

\[
W^{\sigma-1} L_i^{1-\bar{\alpha}(\sigma-1)} w_i^\sigma = \sum_{j=1}^{N} T_{ij}^{1-\sigma} \bar{A}_i^{\sigma-1} \bar{u}_j^{\sigma-1} L_j^{1+\bar{\beta}(\sigma-1)} w_j^\sigma
\]

\[
W^{\sigma-1} w_i^{1-\sigma} L_i^{\bar{\beta}(1-\sigma)} = \sum_{j=1}^{N} T_{ji}^{1-\sigma} \bar{A}_j^{\sigma-1} \bar{u}_i^{\sigma-1} w_j^{1-\sigma} L_j^{\bar{\alpha}(\sigma-1)}
\]

- Now $W^{\sigma-1}$ is the eigenvalue (and total population constraint $\sum_j L_j = \bar{L}$)
Urban Model: Spatial Spillovers

- We now turn to consider the urban model

\[A_i = \sum_j K_{ij} \left(L_j \right)^{\eta} \]

- \(K_{ij} \) represents spatial knowledge links.
- \(\eta \) is the degree of spillover.
- Microfoundations for this functional form presented in AAL '15
Urban Model: Spatial Spillovers

- We now turn to consider the urban model

- Agglomerations are important for cities’ economic activity (Fujita Thisse ’02, Glaeser Gottlieb ’09, Moretti ’11, Davis Dingel ’12)
 - A most crucial: spatial knowledge spillover (introduced by Fujita-Ogawa ’82)
 - Turns out: easy to extend this framework to introduce this spatial spillover
 - Assume that productivity in a location depend on the number of spatial interactions with other nearby workers, L_j

$$A_i = \sum_j K_{ij} (L_j)^\eta$$

- K_{ij} represents spatial knowledge links. η is the degree of spillover
 - Microfoundations for this functional form presented in AAL ’15
Closing the Urban Model

- Equilibrium is
 - gravity for trade+trade module+
 - gravity for commuting+urban module+
 - spatial spillovers

- Solve for E_i, Y_i, L_i, w_i, A_i, W, in the following 5 equations

 trade module: $Y_i = \sum_{j \in S} X_{ij}$, $E_i = \sum_{j \in S} X_{ji}$

 urban module: $E_i = \sum_j w_j L_{ij}$, $Y_i = \sum_j w_i L_{ji}$

 spatial spillover: $A_i = \sum_j K_{ij}(L_j)^\eta$

This general structure incorporates all the previous models as subcases

- Trade module: Armington, AA, AAT
- Urban module: Ahfelt, Redding, Sturm (two factors)
- Trade+urban+spatial spillovers module: AAL
Urban Models: Taking Stock

- That appears like a daunting system to deal with!
 - Turns out it is possible to make further progress
Urban Models: Taking Stock

- That appears like a daunting system to deal with!
 - Turns out it is possible to make further progress
 - Analytical solutions adapted from the theory of differential/integral equations (Fabinger ’15, AA, AAL15)
 - AAL ’14 generalize proof of existence & uniqueness from operator theory
Roadmap

- Analytical Gravity and Mapping to the Data
- Gravity, Modules, and Models
- Characterization of Urban Equilibrium
- Applications
Fujita Ogawa Model with Gravity

- Fujita Ogawa introduced spatial knowledge/productivity spillovers in an urban model
 - Until now analysis focused on explicitly calculating model equilibria (Fujita Ogawa ’82, Lucas Rossi-Hansberg ’03, Rossi-Hansberg ’05)
 - Our gravity model can also be characterized in various special cases
Analytical Solution in the Circle

- We consider the circle
 - Assume commuting model in a circle $[-\pi, \pi]$, no trade costs
 - Spatial knowledge spillovers $K_{ij} = \cos^2\left(\frac{x-s}{2}\right)$, $x, s \in [-\pi, \pi]$

- Solution $L(x) = (C_1 + C_2 \sin(x + C_3))^{(\sigma-1)}$
 - $C_1 > C_2 \geq 0$ are determined by normalization C_3 can be arbitrary.

- If $|\eta(\sigma - 1)| \leq 1$ unique equilibrium if $\sigma > 1$ multiple (any point can be the center)
Labor distribution: $C_1 + C_2 \sin(x - \pi/2)$
Analytical Solution

Labor distribution: \(C_1 + C_2 \sin(x - \pi/2) \)

\(\eta = 0.8 \quad \sigma = 3 \)
Analytical Solution

Labor distribution: \(C_1 + C_2 \sin(x - \pi/2) \)

\[\eta = 1 \quad \sigma = 3 \]
Analytical Solution

Labor distribution: $C_1 + C_2 \sin(x - \pi/2)$

$\eta = 1.2 \quad \sigma = 3$
Analytical Solution

Labor distribution: $C_1 + C_2 \sin(x - \pi/2)$

$\eta = 1.4 \quad \sigma = 3$
A Generalized Gravity ‘Model’

Suppose equilibrium of a model reduces to a system of \((H \times N)\) eqns where we denote locations (or sectors/location-sectors) with \(i, j \in \{1, \ldots, N\}\), eqns with \(k\), type of variable with \(h\); \(k, h \in \{1, \ldots, H\}\)

\[
\lambda^k \prod_{h=1}^{H} (x^h_i)^{\gamma_{kh}} = \sum_{j=1}^{N} K^k_{ij} \left[\prod_{h=1}^{H} (x^h_j)^{\beta_{kh}} \right]
\]

\(x^h_i\) is the type \(h\) equilibrium variable (e.g. wage, price, labor...) in location/sector \(i\).

- Total number of variables to be solved \(H \times N, N \geq 2\)
- \(\lambda^k\) the ‘eigenvalue’ of the system. Its role across models varies.
- \(K^k_{ij} \geq 0\): exogenous linkages (e.g. trade/commuting costs, productivities...)
- \(\gamma_{kh}, \beta_{kh}\) are (exogenous) global parameters (e.g. EoS, parameters from distributions, spillovers...) and \(\Gamma, B\) the corresponding matrices
Theorem: Allen Arkolakis Li ’14

Theorem

Consider the system of equations (3).

If Γ is invertible then:

(i) If $K_{ij}^k > 0$, then there exists a strictly positive solution, $\{x_i^h, \lambda^k\}$.

Define $A \equiv B\Gamma^{-1}$, with element A_{ij} & $A^p \equiv \{|A_{ij}|\}$

(ii) If $K_{ij}^k \geq 0$ and the maximum of the eigenvalues of A^p (spectral radius), $\rho(A^p) \leq 1$, then there exists at most one strictly positive solution (up-to-scale)
Theorem: Allen Arkolakis Li ’14

Theorem
Consider the system of equations (3).
If Γ is invertible then:

(i) If $K_{ij}^k > 0$, then there exists a strictly positive solution, $\{x_i^h, \lambda^k\}$.

Define $A \equiv B \Gamma^{-1}$, with element A_{ij} & $A^p \equiv \{|A_{ij}|\}

(ii) If $K_{ij}^k \geq 0$ and the maximum of the eigenvalues of A^p (spectral radius),

$\rho(A^p) \leq 1$, then there exists at most one strictly positive solution
(up-to-scale)

(iii) If $\rho(A^p) < 1$ and $K_{ij}^k > 0$ for all k, i, j, the unique solution can be computed by a simple iterative procedure.
Theorem: Allen Arkolakis Li ’14

Consider the system of equations (3).

If Γ is invertible then:

(i) If $K_{ij}^k > 0$, then there exists a strictly positive solution, $\{x_i^h, \lambda^k\}$.

Define $A \equiv B\Gamma^{-1}$, with element A_{ij} & $A^p \equiv \{|A_{ij}|\}$

(ii) If $K_{ij}^k \geq 0$ and the maximum of the eigenvalues of A^p (spectral radius), $\rho(A^p) \leq 1$, then there exists at most one strictly positive solution (up-to-scale)

(iii) If $\rho(A^p) < 1$ and $K_{ij}^k > 0$ for all k, i, j, the unique solution can be computed by a simple iterative procedure.

(iv) If $\rho(A^p) > 1$ and all elements of each column of A have the same sign, then there exists a kernel $K_{ij}^k > 0$ such that there are multiple strictly positive solutions, i.e. for some set of frictions, the uniqueness conditions above are both necessary and sufficient.
Application in the Urban Model

- The theorem comes quite handy for the urban model with spatial spillovers
 - You can prove that existence is always guaranteed (not trivial)
 - With no spatial spillovers ($\eta = 0$) uniqueness holds with sufficiently large θ
 - With no trade costs, uniqueness also holds as long if $|\eta(\sigma - 1)| \leq 1$

Note to grad students: can we revisit Davis Weinstein '02 '08 insights to test for multiple equilibria using gravity models?
Application in the Urban Model

- The theorem comes quite handy for the urban model with spatial spillovers
 - You can prove that existence is always guaranteed (not trivial)
 - With no spatial spillovers ($\eta = 0$) uniqueness holds with sufficiently large θ
 - With no trade costs, uniqueness also holds as long if $|\eta (\sigma - 1)| \leq 1$

- Note to grad students: can we revisit Davis Weinstein '02 '08 insights to test for multiple equilibria using gravity models?
Welfare

- What about welfare?

- Standard formula (Arkolakis, Costinot, Rodriguez-Clare ’12) applies
 - Ex-post welfare \(d \ln W_j = -\frac{d \ln \lambda_{ij}}{\epsilon} \)
 - But in the case of labor mobility welfare equalizes; not so useful

- In addition, we want to consider comparative statics
Welfare Comparative Statics

- Can we further characterize welfare comparative statics?
 - In trade model easy to derive (Atkeson Burstein ’10 Burstein Cravino ’15):
 \[
 \frac{d \ln W}{d \ln \tau_{ij}} = -\lambda_{ij} \frac{E_j}{\sum_k E_k} = \frac{X_{ij}}{\sum_k E_k}
 \]

 where \(W \) is expenditure weighted welfare
Welfare Comparative Statics

- Can we further characterize welfare comparative statics?
 - In trade model easy to derive (Atkeson Burstein ’10 Burstein Cravino ’15):
 \[
 \frac{d \ln W}{d \ln \tau_{ij}} = -\lambda_{ij} \frac{E_j}{\sum_k E_k} = \frac{X_{ij}}{\sum_k E_k}
 \]
 where W is expenditure weighted welfare

- In AAL we show that in economic geography ($W_j = W$) with no externalities, $\tilde{\alpha} = \tilde{\beta} = 0$, same result holds!
 - i.e. first order effect of $d \ln \tau_{ij}$ only depends on bilateral trade/world GDP!
 - In general, comparative static of welfare fully pinned down by data
 - Extremely useful results because it allows us to consider planning policies
Can we further characterize welfare comparative statics?

In trade model easy to derive (Atkeson Burstein ’10 Burstein Cravino ’15):

\[
\frac{d \ln W}{d \ln \tau_{ij}} = -\lambda_{ij} \frac{E_j}{\sum_k E_k} = \frac{X_{ij}}{\sum_k E_k}
\]

where \(W \) is expenditure weighted welfare

In AAL we show that in economic geography \((W_j = W)\) with no externalities, \(\tilde{\alpha} = \tilde{\beta} = 0 \), same result holds!

- i.e. first order effect of \(d \ln \tau_{ij} \) only depends on bilateral trade/world GDP!
- In general, comparative static of welfare fully pinned down by data
- Extremely useful results because it allows us to consider planning policies
 - E.g. what is the optimal city structure?
Roadmap

- Analytical Model and Mapping to the Data
- Gravity, Modules, and Models
- Characterization of Urban Equilibrium
- Applications
Applications

- Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al, Monte et al, AAL, Caliendo Parro Rossi-Hansberg ’14, Faber Gaubert ’15 etc)
Applications

- Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al, Monte et al, AAL, Caliendo Parro Rossi-Hansberg ’14, Faber Gaubert ’15 etc)
Applications

- Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al, Monte et al, AAL, Caliendo Parro Rossi-Hansberg ’14, Faber Gaubert ’15 etc)
Applications

- Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al, Monte et al, AAL, Caliendo Parro Rossi-Hansberg ’14, Faber Gaubert ’15 etc)

- Can we use this setup to think about trade cost/commuting costs etc?
 - Fast marching method (AA) ideally fit for the job
The Fast Marching Method for Spatial Economics
The Fast Marching Method for Spatial Economics

\{ j \mid t(i,j) = C \}
The Fast Marching Method for Spatial Economics
The Fast Marching Method with an Example
The Fast Marching Method with an Example
Transportation infrastructure
Conclusion

- We developed an analytical GE framework with tight connection to data
 - We showed that we can go a long way characterizing this setup
 - Robust and appealing framework: works as well for trade, geography, urban

- What are the future applications?
 - Can we think of the impact on inequality? (Burstein Vogel Morales ’15, Lee ’15, Gale et al ’15)
 - Non-CES? (Parenti et al ’15, Okubo Picard Thisse ’10, Arkolakis et al)
 - Spatial sorting? (Costinot Vogel ’10, Davis Dingel ’15, Ziv ’15, Gaubert)
 - How to allocate funds in building roads? What is the optimal city zoning?
Conclusion

- We developed an analytical GE framework with tight connection to data
 - We showed that we can go a long way characterizing this setup
 - Robust and appealing framework: works as well for trade, geography, urban

- What are the future applications?
 - Can we think of the impact on inequality? (Burstein Vogel Morales ’15, Lee ’15, Gale et al ’15)
 - Non-CES? (Parenti et al ’15, Okubo Picard Thisse ’10, Arkolakis et al)
 - Spatial sorting? (Costinot Vogel ’10, Davis Dingel ’15, Ziv ’15, Gaubert)
 - How to allocate funds in building roads? What is the optimal city zoning?

- Bottom line: Roback framework is extremely versatile (e.g Diamonds ’15)
 - But lacks spatial interactions. Is it high time for a new spatial framework?